39 research outputs found

    An Analysis of Residential Camp Site Structure !or Two Early Archaic Assemblages from Rose Island (40MR44), Tennessee

    Get PDF
    The site structure of two Early Archaic period assemblages is defined through spatial analysis of artifact and facility distributions at the Rose Island site (40MR44) in the lower Little Tennessee River valley. These assemblages derive from well controlled excavation of deeply buried alluvial deposits attributable to LeCroy (c. 6100-6500 B.C.) and St. Albans (c. 6600-7000 B.C.) temporal units. Spatial patterning is detected using multivariate statistical analysis of formal implement, instant tool, and debitage categories. The observed spatial patterns are interpreted through a comparison with expected spatial patterns generated from an a priori model of hunter-gatherer residential camp activity structure. The results of the analysis allow the proposal of a general model of Early Archaic residential camp site structure. The model identifies activity areas based upon densities and spatial relationships of artifact categories for an assemblage. The reconstructed activity structure describes the location of the family hearth as occurring in front of the opening of the shelter. A wide range of activities are localized around the family hearth. More specialized activities, such as flintworking, hideworking, and the roasting of game, are conducted near the shelter, but apart from the family hearth

    Experiment for cryogenic large-aperture intensity mapping: instrument design

    Get PDF
    The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z  =  3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R  =  512 and angular resolution ≈4  arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305  deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Paleoamerican exploitation of extinct megafauna revealed through immunological blood residue and microwear analysis, North and South Carolina, USA

    No full text
    Abstract Previous immunological studies in the eastern USA have failed to establish a direct connection between Paleoamericans and extinct megafauna species. The lack of physical evidence for the presence of extinct megafauna begs the question, did early Paleoamericans regularly hunt or scavenge these animals, or were some megafauna already extinct? In this study of 120 Paleoamerican stone tools from across North and South Carolina, we investigate this question using crossover immunoelectrophoresis (CIEP). We find immunological support for the exploitation of extant and extinct megafauna, including Proboscidea, Equidae, and Bovidae (possibly Bison antiquus), on Clovis points and scrapers, as well as possible early Paleoamerican Haw River points. Post-Clovis points tested positive for Equidae and Bovidae but not Proboscidea. Microwear results are consistent with projectile usage, butchery, fresh- and dry hide scraping, the use of ochre-coated dry hides for hafting, and dry hide sheath wear. This study represents the first direct evidence of the exploitation of extinct megafauna by Clovis and other Paleoamerican cultures in the Carolinas and more broadly, across the eastern United States, where there is generally poor to non-existent faunal preservation. Future CIEP analysis of stone tools may provide evidence on the timing and demography of megafaunal collapse leading to eventual extinction
    corecore