708 research outputs found

    Relative replication capacity of phenotypic SIV variants during primary infections differs with route of inoculation

    Get PDF
    BACKGROUND: Previous studies of human and simian immunodeficiency virus (HIV and SIV) have demonstrated that adaptive mutations selected during the course of infection alter viral replicative fitness, persistence, and pathogenicity. What is unclear from those studies is the impact of transmission on the replication and pathogenicity of the founding virus population. Using the SIV-macaque model, we examined whether the route of infection would affect the establishment and replication of two SIVmne variants of distinct in vitro and in vivo biological characteristics. For these studies, we performed dual-virus inoculations of pig-tailed macaques via intrarectal or intravenous routes with SIVmneCl8, a miminally pathogenic virus, and SIVmne027, a highly pathogenic variant that replicates more robustly in CD4(+ )T cells. RESULTS: The data demonstrate that SIVmne027 is the dominant virus regardless of the route of infection, indicating that the capacity to replicate efficiently in CD4(+ )T cells is important for fitness. Interestingly, in comparison to intravenous co-infection, intrarectal inoculation enabled greater relative replication of the less pathogenic virus, SIVmneCl8. Moreover, a higher level of SIVmneCl8 replication during primary infection of the intrarectally inoculated macaques was associated with lower overall plasma viral load and slower decline in CD4(+ )T cells, even though SIVmne027 eventually became the dominant virus. CONCLUSIONS: These results suggest that the capacity to replicate in CD4(+ )T cells is a significant determinant of SIV fitness and pathogenicity. Furthermore, the data also suggest that mucosal transmission may support early replication of phenotypically diverse variants, while slowing the rate of CD4(+ )T cell decline during the initial stages of infection

    Phase Diagram of Pressure-Induced Superconductivity in EuFe2As2 Probed by High-Pressure Resistivity up to 3.2 GPa

    Full text link
    We have constructed a pressure-temperature (PTP-T) phase diagram of PP-induced superconductivity in EuFe2_2As2_2 single crystals, via resistivity (ρ\rho) measurements up to 3.2 GPa. As hydrostatic pressure is applied, an antiferromagnetic (AF) transition attributed to the FeAs layers at T0T_\mathrm{0} shifts to lower temperatures, and the corresponding resistive anomaly becomes undetectable for PP \ge 2.5 GPa. This suggests that the critical pressure PcP_\mathrm{c} where T0T_\mathrm{0} becomes zero is about 2.5 GPa. We have found that the AF order of the Eu2+^{2+} moments survives up to 3.2 GPa without significant changes in the AF ordering temperature TNT_\mathrm{N}. The superconducting (SC) ground state with a sharp transition to zero resistivity at TcT_\mathrm{c} \sim 30 K, indicative of bulk superconductivity, emerges in a pressure range from PcP_\mathrm{c} \sim 2.5 GPa to \sim 3.0 GPa. At pressures close to but outside the SC phase, the ρ(T)\rho(T) curve shows a partial SC transition (i.e., zero resistivity is not attained) followed by a reentrant-like hump at approximately TNT_\mathrm{N} with decreasing temperature. When nonhydrostatic pressure with a uniaxial-like strain component is applied using a solid pressure medium, the partial superconductivity is continuously observed in a wide pressure range from 1.1 GPa to 3.2 GPa.Comment: 7 pages, 6 figures, accepted for publication in Physical Review B, selected as "Editors' Suggestion

    Pressure-Induced Antiferromagnetic Bulk Superconductor EuFe2_2As2_2

    Full text link
    We present the magnetic and superconducting phase diagram of EuFe2_2As2_2 for BcB \parallel c and BabB \parallel ab. The antiferromagnetic phase of the Eu2+^{2+} moments is completely enclosed in the superconducting phase. The upper critical field vs. temperature curves exhibit strong concave curvatures, which can be explained by the Jaccarino-Peter compensation effect due to the antiferromagnetic exchange interaction between the Eu2+^{2+} moments and conduction electrons.Comment: submitted to the proceedings of the M2S-IX Toky

    Anomalous vortex dynamics in spin-triplet superconductor UTe2_2

    Full text link
    The vortex dynamics in the spin-triplet superconductor, UTe2_2, are studied by measuring the DC electrical resistivity with currents along the aa-axis under magnetic fields along the bb-axis. Surprisingly, we have discovered an island region of low critical current deep inside the superconducting (SC) state, well below the SC upper critical field, attributed to a weakening of vortex pinning. Notably, this region coincides with the recently proposed intermediate-field SC state. We discuss the possibility of nonsingular vortices in the intermediate state, where SC order parameter does not vanish entirely in the vortex cores due to the mixing of multiple SC components

    The Competition between Staggered Field and Antiferromagnetic Interactions in Cugeo3:Fe

    Full text link
    The EPR spectra along different crystallographic axes for single crystals of CuGeO3 containing 1% of Fe impurity have been studied in the frequency range 60-360 GHz at temperatures 0.5-30 K. The analysis based on the Oshikawa-Affleck (OA) theory suggests that the temperature dependences of the line width and g-factor are formed as a result of the competition between interchain antiferromagnetic interactions and staggered Zeeman energy. It is found that staggered magnetic moments in CuGeO3:Fe are located predominantly along b axis.Comment: 9 pages, 4 figures; submitted to QSS04 symposiu
    corecore