19 research outputs found

    Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit.

    Get PDF
    A multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), regulates critical cellular processes including the cell cycle. To accomplish its diverse functions, APC/C activity must be precisely regulated in time and space. The interphase APC/C activator Fizzy-related (Fzr or Cdh1) is localized at centrosomes in animal cells. However, neither the mechanism of its localization nor its importance is clear. Here we identify the centrosome component Spd2 as a major partner of Fzr in Drosophila. The localization of Fzr to the centriole during interphase depends on direct interaction with Spd2. By generating Spd2 mutants unable to bind Fzr, we show that centrosomal localization of Fzr is essential for optimal APC/C activation towards its centrosomal substrate Aurora A. Finally, we show that Spd2 is also a novel APC/C(Fzr) substrate. Our study is the first to demonstrate the critical importance of distinct subcellular pools of APC/C activators in the spatiotemporal control of APC/C activity.Cancer Research UK (Career Development Fellowship), Biotechnology and Biological Sciences Research Council (project grant), Medical Research Council (project grant), Japan Society for the Promotion of Science (Postdoctoral Fellowship for Research Abroad), European Commission (Marie Skłodowska-Curie actions individual fellowship)This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1260

    DAPPER: a data-mining resource for protein-protein interactions.

    Get PDF
    BACKGROUND: The identification of interaction networks between proteins and complexes holds the promise of offering novel insights into the molecular mechanisms that regulate many biological processes. With increasing volumes of such datasets, especially in model organisms such as Drosophila melanogaster, there exists a pressing need for specialised tools, which can seamlessly collect, integrate and analyse these data. Here we describe a database coupled with a mining tool for protein-protein interactions (DAPPER), developed as a rich resource for studying multi-protein complexes in Drosophila melanogaster. RESULTS: This proteomics database is compiled through mass spectrometric analyses of many protein complexes affinity purified from Drosophila tissues and cultured cells. The web access to DAPPER is provided via an accelerated version of BioMart software enabling data-mining through customised querying and output formats. The protein-protein interaction dataset is annotated with FlyBase identifiers, and further linked to the Ensembl database using BioMart's data-federation model, thereby enabling complex multi-dataset queries. DAPPER is open source, with all its contents and source code are freely available. CONCLUSIONS: DAPPER offers an easy-to-navigate and extensible platform for real-time integration of diverse resources containing new and existing protein-protein interaction datasets of Drosophila melanogaster.This work was supported financially by grants from the Cancer Research UK (CRUK), the Biotechnology and Biological Sciences Research Council and the Medical Research Council to DMG (C3/A11431, BB/I013938/1, G1001696), by a Cancer Research UK Career Development Fellowship to YK (C40697/A12874), and by Cancer Research UK grants to PPD (C12296/A8039 and C12296/A12541). ZL is on leave from the Biological Research Centre of the Hungarian Academy of Sciences (Institute of Biochemistry, Szeged, Hungary) and was supported by a Long-Term Fellowship of the Federation of European Biochemical Societies (FEBS)

    Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit

    No full text
    A multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), regulates critical cellular processes including the cell cycle. To accomplish its diverse functions, APC/C activity must be precisely regulated in time and space. The interphase APC/C activator Fizzy-related (Fzr or Cdh1) is localized at centrosomes in animal cells. However, neither the mechanism of its localization nor its importance is clear. Here we identify the centrosome component Spd2 as a major partner of Fzr in Drosophila. The localization of Fzr to the centriole during interphase depends on direct interaction with Spd2. By generating Spd2 mutants unable to bind Fzr, we show that centrosomal localization of Fzr is essential for optimal APC/C activation towards its centrosomal substrate Aurora A. Finally, we show that Spd2 is also a novel APC/C^(Fzr) substrate. Our study is the first to demonstrate the critical importance of distinct subcellular pools of APC/C activators in the spatiotemporal control of APC/C activity

    APC/C-dependent degradation of Spd2 regulates centrosome asymmetry in Drosophila neural stem cells.

    Get PDF
    Funder: Marie Curie (Marie Curie Cancer Care); Id: http://dx.doi.org/10.13039/501100000654A functional centrosome is vital for the development and physiology of animals. Among numerous regulatory mechanisms of the centrosome, ubiquitin-mediated proteolysis is known to be critical for the precise regulation of centriole duplication. However, its significance beyond centrosome copy number control remains unclear. Using an in vitro screen for centrosomal substrates of the APC/C ubiquitin ligase in Drosophila, we identify several conserved pericentriolar material (PCM) components, including the inner PCM protein Spd2. We show that Spd2 levels are controlled by the interphase-specific form of APC/C, APC/CFzr , in cultured cells and developing brains. Increased Spd2 levels compromise neural stem cell-specific asymmetric PCM recruitment and microtubule nucleation at interphase centrosomes, resulting in partial randomisation of the division axis and segregation patterns of the daughter centrosome in the following mitosis. We further provide evidence that APC/CFzr -dependent Spd2 degradation restricts the amount and mobility of Spd2 at the daughter centrosome, thereby facilitating the accumulation of Polo-dependent Spd2 phosphorylation for PCM recruitment. Our study underpins the critical role of cell cycle-dependent proteolytic regulation of the PCM in stem cells
    corecore