171,493 research outputs found
Coupled oscillators and Feynman's three papers
According to Richard Feynman, the adventure of our science of physics is a
perpetual attempt to recognize that the different aspects of nature are really
different aspects of the same thing. It is therefore interesting to combine
some, if not all, of Feynman's papers into one. The first of his three papers
is on the ``rest of the universe'' contained in his 1972 book on statistical
mechanics. The second idea is Feynman's parton picture which he presented in
1969 at the Stony Brook conference on high-energy physics. The third idea is
contained in the 1971 paper he published with his students, where they show
that the hadronic spectra on Regge trajectories are manifestations of
harmonic-oscillator degeneracies. In this report, we formulate these three
ideas using the mathematics of two coupled oscillators. It is shown that the
idea of entanglement is contained in his rest of the universe, and can be
extended to a space-time entanglement. It is shown also that his parton model
and the static quark model can be combined into one Lorentz-covariant entity.
Furthermore, Einstein's special relativity, based on the Lorentz group, can
also be formulated within the mathematical framework of two coupled
oscillators.Comment: 31 pages, 6 figures, based on the concluding talk at the 3rd Feynman
Festival (Collage Park, Maryland, U.S.A., August 2006), minor correction
Proton pygmy resonances: predictions for N=20 isotones
We study theoretically the low-energy electric-dipole response of N=20
isotones. We present results from a quasiparticle random-phase approximation
(QRPA) and a continuum random-phase approximation (CRPA), and we compare them
with results for the mirror Z=20 nuclei. According to our analysis, enhanced E1
strength is expected energetically well below the giant dipole resonance in the
proton-rich isotones. Large amounts of E1 strength in the asymmetric N=20
isotones are predicted, unlike their equally asymmetric Z=20 mirror nuclei,
pointing unambiguously to the role of structural effects such as loose binding.
A proton-skin oscillation could develop especially in 46Fe. The proper
description of non localized threshold transitions and the nucleon effective
mass in mean-field treatments may affect theoretical predictions. We call for
systematic theoretical investigations to quantify the role bulk-matter
properties, in anticipation of measurements of E1 transitions in proton-rich
nuclei.Comment: 10 pages, incl. 9 figures and 2 tables; v2: some rephrasing and
clarifications, corrected Fig.
Standing waves in the Lorentz-covariant world
When Einstein formulated his special relativity, he developed his dynamics
for point particles. Of course, many valiant efforts have been made to extend
his relativity to rigid bodies, but this subject is forgotten in history. This
is largely because of the emergence of quantum mechanics with wave-particle
duality. Instead of Lorentz-boosting rigid bodies, we now boost waves and have
to deal with Lorentz transformations of waves. We now have some understanding
of plane waves or running waves in the covariant picture, but we do not yet
have a clear picture of standing waves. In this report, we show that there is
one set of standing waves which can be Lorentz-transformed while being
consistent with all physical principle of quantum mechanics and relativity. It
is possible to construct a representation of the Poincar\'e group using
harmonic oscillator wave functions satisfying space-time boundary conditions.
This set of wave functions is capable of explaining the quantum bound state for
both slow and fast hadrons. In particular it can explain the quark model for
hadrons at rest, and Feynman's parton model hadrons moving with a speed close
to that of light.Comment: LaTex 20 pages, presented at the 2004 meeting of the International
Association of Relativistic Dynamincs, to be published in the proceeding
Feynman's Decoherence
Gell-Mann's quarks are coherent particles confined within a hadron at rest,
but Feynman's partons are incoherent particles which constitute a hadron moving
with a velocity close to that of light. It is widely believed that the quark
model and the parton model are two different manifestations of the same
covariant entity. If this is the case, the question arises whether the Lorentz
boost destroys coherence. It is pointed out that this is not the case, and it
is possible to resolve this puzzle without inventing new physics. It is shown
that this decoherence is due to the measurement processes which are less than
complete.Comment: RevTex 15 pages including 6 figs, presented at the 9th Int'l
Conference on Quantum Optics (Raubichi, Belarus, May 2002), to be published
in the proceeding
Renormalization analysis of intermittency in two coupled maps
The critical behavior for intermittency is studied in two coupled
one-dimensional (1D) maps. We find two fixed maps of an approximate
renormalization operator in the space of coupled maps. Each fixed map has a
common relavant eigenvaule associated with the scaling of the control parameter
of the uncoupled one-dimensional map. However, the relevant ``coupling
eigenvalue'' associated with coupling perturbation varies depending on the
fixed maps. These renormalization results are also confirmed for a
linearly-coupled case.Comment: 11 pages, RevTeX, 2 eps figure
Consequences of Cadmium exposure on growth and reproduction across three generations of earthworm
Heavy metal pollution disturbs the soil ecosystem by negatively affecting soil fauna and flora. In term of biomass and activity Annelids are a very important part of the soil invertebrate community. They are one of the first organisms affected by heavy metal contamination in soil and as such are good model organisms for assessing soil contamination. The aim of this research is to observe how Cd impacts on health and reproduction in three consecutive generations of E. fetida. [...]falseOnlin
Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge
We systematically embed the SU(2)U(1) Higgs model in the unitary
gauge into a fully gauge-invariant theory by following the generalized BFT
formalism. We also suggest a novel path to get a first-class Lagrangian
directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure
- …