12,988 research outputs found

    Competing by Saving Lives: How Pharmaceutical and Medical Device Companies Create Shared Value in Global Health

    Get PDF
    This report looks at how pharmaceutical and medical device companies can create shared value in global health by addressing unmet health needs in low- and middle-income countries. Companies have already begun to reap business value and are securing competitive advantages in the markets of tomorrow

    Predicting continuous conflict perception with Bayesian Gaussian processes

    Get PDF
    Conflict is one of the most important phenomena of social life, but it is still largely neglected by the computing community. This work proposes an approach that detects common conversational social signals (loudness, overlapping speech, etc.) and predicts the conflict level perceived by human observers in continuous, non-categorical terms. The proposed regression approach is fully Bayesian and it adopts Automatic Relevance Determination to identify the social signals that influence most the outcome of the prediction. The experiments are performed over the SSPNet Conflict Corpus, a publicly available collection of 1430 clips extracted from televised political debates (roughly 12 hours of material for 138 subjects in total). The results show that it is possible to achieve a correlation close to 0.8 between actual and predicted conflict perception

    PE Header Analysis for Malware Detection

    Get PDF
    Recent research indicates that effective malware detection can be implemented based on analyzing portable executable (PE) file headers. Such research typically relies on prior knowledge of the header to extract relevant features. However, it is also possible to consider the entire header as a whole, and use this directly to determine whether the file is malware. In this research, we collect a large and diverse malware data set. We then analyze the effectiveness of various machine learning techniques based on PE headers to classify the malware samples. We compare the accuracy and efficiency of each technique considered

    Automatic prediction of mortality in patients with mental illness using electronic health records

    Full text link
    Mental disorders impact the lives of millions of people globally, not only impeding their day-to-day lives but also markedly reducing life expectancy. This paper addresses the persistent challenge of predicting mortality in patients with mental diagnoses using predictive machine-learning models with electronic health records (EHR). Data from patients with mental disease diagnoses were extracted from the well-known clinical MIMIC-III data set utilizing demographic, prescription, and procedural information. Four machine learning algorithms (Logistic Regression, Random Forest, Support Vector Machine, and K-Nearest Neighbors) were used, with results indicating that Random Forest and Support Vector Machine models outperformed others, with AUC scores of 0.911. Feature importance analysis revealed that drug prescriptions, particularly Morphine Sulfate, play a pivotal role in prediction. We applied a variety of machine learning algorithms to predict 30-day mortality followed by feature importance analysis. This study can be used to assist hospital workers in identifying at-risk patients to reduce excess mortality

    PATTERN: Pain Assessment for paTients who can't TEll using Restricted Boltzmann machiNe.

    Get PDF
    BackgroundAccurately assessing pain for those who cannot make self-report of pain, such as minimally responsive or severely brain-injured patients, is challenging. In this paper, we attempted to address this challenge by answering the following questions: (1) if the pain has dependency structures in electronic signals and if so, (2) how to apply this pattern in predicting the state of pain. To this end, we have been investigating and comparing the performance of several machine learning techniques.MethodsWe first adopted different strategies, in which the collected original n-dimensional numerical data were converted into binary data. Pain states are represented in binary format and bound with above binary features to construct (n + 1) -dimensional data. We then modeled the joint distribution over all variables in this data using the Restricted Boltzmann Machine (RBM).ResultsSeventy-eight pain data items were collected. Four individuals with the number of recorded labels larger than 1000 were used in the experiment. Number of avaliable data items for the four patients varied from 22 to 28. Discriminant RBM achieved better accuracy in all four experiments.ConclusionThe experimental results show that RBM models the distribution of our binary pain data well. We showed that discriminant RBM can be used in a classification task, and the initial result is advantageous over other classifiers such as support vector machine (SVM) using PCA representation and the LDA discriminant method
    • …
    corecore