221,625 research outputs found
Geographical Coarsegraining of Complex Networks
We perform the renormalization-group-like numerical analysis of
geographically embedded complex networks on the two-dimensional square lattice.
At each step of coarsegraining procedure, the four vertices on each square box are merged to a single vertex, resulting in the coarsegrained
system of the smaller sizes. Repetition of the process leads to the observation
that the coarsegraining procedure does not alter the qualitative
characteristics of the original scale-free network, which opens the possibility
of subtracting a smaller network from the original network without destroying
the important structural properties. The implication of the result is also
suggested in the context of the recent study of the human brain functional
network.Comment: To appear in Phys. Rev. Let
Omni-directional L-band antenna for mobile communications
The principle and design of an L-band omni-directional mobile communication antenna are discussed. The antenna is a circular wave guide aperture with hybrid circuits attached to higher order mode excitation. It produces polarized and symmetric two split beams in elevation. The circular waveguide is fed by eight probes with a 90 degree phase shift between their inputs. Radiation pattern characteristics are controlled by adjusting the aperture diameter and mode excitation. This antenna satisfies gain requirements as well as withstanding the harsh environment
Bioaffinity detection of pathogens on surfaces
The demand for improved technologies capable of rapidly detecting pathogens with high sensitivity and selectivity in complex environments continues to be a significant challenge that helps drive the development of new analytical techniques. Surface-based detection platforms are particularly attractive as multiple bioaffinity interactions between different targets and corresponding probe molecules can be monitored simultaneously in a single measurement. Furthermore, the possibilities for developing new signal transduction mechanisms alongside novel signal amplification strategies aremuchmore varied. In this article, we describe some of the latest advances in the use of surface bioaffinity detection of pathogens. Three major sections will be discussed: (i) a brief overview on the choice of probe molecules such as antibodies, proteins and aptamers specific to pathogens and surface attachment chemistries to immobilize those probes onto various substrates, (ii) highlighting examples among the current generation of surface biosensors, and (iii) exploring emerging technologies that are highly promising and likely to form the basis of the next generation of pathogenic sensors
Electrodynamics of the vanadium oxides VO2 and V2O3
The optical/infrared properties of films of vanadium dioxide (VO2) and
vanadium sesquioxide (V2O3) have been investigated via ellipsometry and
near-normal incidence reflectance measurements from far infrared to ultraviolet
frequencies. Significant changes occur in the optical conductivity of both VO2
and V2O3 across the metal-insulator transitions at least up to (and possibly
beyond) 6 eV. We argue that such changes in optical conductivity and electronic
spectral weight over a broad frequency range is evidence of the important role
of electronic correlations to the metal-insulator transitions in both of these
vanadium oxides. We observe a sharp optical transition with possible final
state (exciton) effects in the insulating phase of VO2. This sharp optical
transition occurs between narrow a1g bands that arise from the
quasi-one-dimensional chains of vanadium dimers. Electronic correlations in the
metallic phases of both VO2 and V2O3 lead to reduction of the kinetic energy of
the charge carriers compared to band theory values, with paramagnetic metallic
V2O3 showing evidence of stronger correlations compared to rutile metallic VO2.Comment: 11 pages, 7 figure
Phonon arithmetic in a trapped ion system
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically
Modulation of the Curie Temperature in Ferromagnetic/Ferroelectric Hybrid Double Quantum Wells
We propose a ferromagnetic/ferroelectric hybrid double quantum well
structure, and present an investigation of the Curie temperature (Tc)
modulation in this quantum structure. The combined effects of applied electric
fields and spontaneous electric polarization are considered for a system that
consists of a Mn \delta-doped well, a barrier, and a p-type ferroelectric well.
We calculate the change in the envelope functions of carriers at the lowest
energy sub-band, resulting from applied electric fields and switching the
dipole polarization. By reversing the depolarizing field, we can achieve two
different ferromagnetic transition temperatures of the ferromagnetic quantum
well in a fixed applied electric field. The Curie temperature strongly depends
on the position of the Mn \delta-doped layer and the polarization strength of
the ferroelectric well.Comment: 9 pages, 5 figures, to be published in Phys. Rev. B (2006) minor
revision: One of the line types is changed in Fig.
- …
