815 research outputs found
Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport
Surrogate functions have become an important tool in multidisciplinary design optimization to deal with noisy functions, high computational cost, and the practical difficulty of integrating legacy disciplinary computer codes. A combination of mathematical, statistical, and engineering techniques, well known in other contexts, have made polynomial surrogate functions viable for MDO. Despite the obvious limitations imposed by sparse high fidelity data in high dimensions and the locality of low order polynomial approximations, the success of the panoply of techniques based on polynomial response surface approximations for MDO shows that the implementation details are more important than the underlying approximation method (polynomial, spline, DACE, kernel regression, etc.). This paper surveys some of the ancillary techniques—statistics, global search, parallel computing, variable complexity modeling—that augment the construction and use of polynomial surrogates
A Systematic Analysis of the Lepton Polarization Asymmetries in the Rare B Decay, B -> X_s\tau^+\tau^-
The most general model-independent analysis of the lepton polarization
asymmetries in the rare B decay, \Bstt, is presented. We present the
longitudinal, normal and transverse polarization asymmetries for the
and , and combinations of them, as functions of the Wilson coefficients
of twelve independent four-Fermi interactions, ten of them local and two
nonlocal. These procedures will tell us which type of operators contributes to
the process. And it will be very useful to pin down new physics systematically,
once we have the experimental data with high statistics and a deviation from
the Standard Model is found.Comment: 24 pages, 8 figures, LaTe
Comprehensive understanding of nano-sized particle separation processes using nanoparticle tracking analysis
Understanding of nano-sized particle separation processes has been limited by difficulties of nanoparticle characterization. In this study, nanoparticle tracking analysis (NTA) was deployed to evaluate the absolute particle size distributions in laboratory scale flocculation and filtration experiments with silver nanoparticles. The results from NTA were consistent with standard theories of particle destabilization and transport. Direct observations of changes in absolute particle size distributions from NTA enhance both qualitative and quantitative understanding of particle separation processes of nano-sized particles
Silver nanoparticle removal from drinking water: Flocculation/sedimentation or filtration?
Silver nanoparticles are used in a wide variety of consumer products and are therefore rapidly becoming ubiquitous in the natural environment; they can be expected to be found in the natural waters used as drinking water supplies. This research investigated whether such particles could be expected to be removed in conventional water treatment plants such as flocculation and filtration. Both flocculation and granular media filtration experiments with citrate-capped silver nanoparticles were performed at different ionic strengths and in the presence and absence of natural organic matter. The results were generally consistent with theories of particle destabilization that have been developed for larger particles (greater than 1 mm), suggesting that silver nanoparticles are likely to be removed in conventional treatment processes
Lepton Polarization and Forward-Backward Asymmetries in b -> s tau+ tau-
We study the spin polarizations of both tau leptons in the decay b -> s tau+
tau-. In addition to the polarization asymmetries involving a single tau, we
construct asymmetries for the case where both polarizations are simultaneously
measured. We also study forward-backward asymmetries with polarized tau's. We
find that a large number of asymmetries are predicted to be large, >~ 10%. This
permits the measurement of all Wilson coefficients and the b-quark mass, thus
allowing the standard model (SM) to be exhaustively tested. Furthermore, there
are many unique signals for the presence of new physics. For example,
asymmetries involving triple-product correlations are predicted to be tiny
within the SM, O(10^{-2}). Their observation would be a clear signal of new
physics.Comment: 21 pages, LaTeX, 4 figures (included). Paper somewhat reorganized,
references greatly expanded, conclusions unchange
Asymptotic normalization coefficients for 8B->7Be+p from a study of 8Li->7Li+n
Asymptotic normalization coefficients (ANCs) for 8Li->7Li+n have been
extracted from the neutron transfer reaction 13C(7Li,8Li)12C at 63 MeV. These
are related to the ANCs in 8B->7Be+p using charge symmetry. We extract ANCs for
8B that are in very good agreement with those inferred from proton transfer and
breakup experiments. We have also separated the contributions from the p_1/2
and p_3/2 components in the transfer. We find the astrophysical factor for the
7Be(p,gamma)8B reaction to be S_17(0)=17.6+/-1.7 eVb. This is the first time
that the rate of a direct capture reaction of astrophysical interest has been
determined through a measurement of the ANCs in the mirror system.Comment: 5 pages, 3 figures, 2 table
Computational techniques for characterisation of electrically conductive MOFs : quantum calculations and machine learning approaches
The customisability of metal–organic frameworks (MOFs) has attracted exponentially growing interest in the realm of materials science. Because of their porous nature, MOF research has been primarily focused on gas storage and separation. More recent investigations into MOFs have realised promising electronic characteristics suitable for applications in electrocatalysis, resistive sensing and energy storage. Despite high porosity and presence of organic linkers, — properties that contribute to the electrical insulating properties of most MOFs — several strategies have been developed to construct MOFs with high conductivity. These recent findings serve as strong encouragement that the incorporation of charge transport chemistries into MOFs leads to structures that exhibit conductive behaviour. However, our understanding behind the nature of conductivity in MOFs is not yet explicitly evident. The development of outstanding conductive MOFs would be greatly accelerated if we had an atomistic-level understanding of how low-energy charge transport pathways can be installed in MOFs. In this context, computational quantum mechanical methods can produce rich electronic structure details with sufficient accuracy to provide insights towards MOFs’ conductive behaviour. An emerging alternative design strategy is the use of machine learning to accelerate the way we screen and discover new conductive materials. In this review, we summarise the most widely used quantum mechanical techniques to characterise important band structure parameters and compare them with experimental measurements in the MOF literature. We also highlight the current state of the art in machine learning assisted screening of MOFs for their conductive properties and discuss the opportunities and challenges which lie ahead in this exciting field
A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed
Apoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the criticalroles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III, and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility for studying apoptosis invivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery. Palchaudhuri etal. describe the discovery of a small molecule called "Raptinal" that induces unusually rapid apoptotic cell death via the intrinsic pathway. Their work describes the utility of Raptinal as a tool for apoptosis induction relative to other available small molecules
A Model Independent Analysis of the Rare B Decay B -> X_s l^+ l^-
The most general model-independent analysis of the rare decay, \Bsll,
is presented. There are ten independent local four-Fermi interactions which may
contribute to this process. The branching ratio, the forward-backward
asymmetry, and the double differential rate are written as functions of the
Wilson coefficients of the ten operators. We also study the correlation between
the branching ratio and the forward-backward asymmetry by changing each
coefficient. This procedure tells us which types of operator contribute to the
process, and it will be very useful to pin down new physics systematically,
once we have the experimental data with high statistics and the deviation from
the Standard Model is found.Comment: 32 pages, 21 figures, LaTe
- …