14,871 research outputs found

    Non Mean-Field Quantum Critical Points from Holography

    Full text link
    We construct a class of quantum critical points with non-mean-field critical exponents via holography. Our approach is phenomenological. Beginning with the D3/D5 system at nonzero density and magnetic field which has a chiral phase transition, we simulate the addition of a third control parameter. We then identify a line of quantum critical points in the phase diagram of this theory, provided that the simulated control parameter has dimension less than two. This line smoothly interpolates between a second-order transition with mean-field exponents at zero magnetic field to a holographic Berezinskii-Kosterlitz-Thouless transition at larger magnetic fields. The critical exponents of these transitions only depend upon the parameters of an emergent infrared theory. Moreover, the non-mean-field scaling is destroyed at any nonzero temperature. We discuss how generic these transitions are.Comment: 15 pages, 7 figures, v2: Added reference

    Onset of criticality and transport in a driven diffusive system

    Full text link
    We study transport properties in a slowly driven diffusive system where the transport is externally controlled by a parameter pp. Three types of behavior are found: For p<pp<p' the system is not conducting at all. For intermediate pp a finite fraction of the external excitations propagate through the system. Third, in the regime p>pcp>p_c the system becomes completely conducting. For all p>pp>p' the system exhibits self-organized critical behavior. In the middle of this regime, at pcp_c, the system undergoes a continuous phase transition described by critical exponents.Comment: 4 latex/revtex pages; 4 figure

    Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature

    Full text link
    We investigate systems of nature where the common physical processes diffusion and fragmentation compete. We derive a rate equation for the size distribution of fragments. The equation leads to a third order differential equation which we solve exactly in terms of Bessel functions. The stationary state is a universal Bessel distribution described by one parameter, which fits perfectly experimental data from two very different system of nature, namely, the distribution of ice crystal sizes from the Greenland ice sheet and the length distribution of alpha-helices in proteins.Comment: 4 pages, 3 figures, (minor changes

    The Tangled Nature model as an evolving quasi-species model

    Full text link
    We show that the Tangled Nature model can be interpreted as a general formulation of the quasi-species model by Eigen et al. in a frequency dependent fitness landscape. We present a detailed theoretical derivation of the mutation threshold, consistent with the simulation results, that provides a valuable insight into how the microscopic dynamics of the model determine the observed macroscopic phenomena published previously. The dynamics of the Tangled Nature model is defined on the microevolutionary time scale via reproduction, with heredity, variation, and natural selection. Each organism reproduces with a rate that is linked to the individuals' genetic sequence and depends on the composition of the population in genotype space. Thus the microevolutionary dynamics of the fitness landscape is regulated by, and regulates, the evolution of the species by means of the mutual interactions. At low mutation rate, the macro evolutionary pattern mimics the fossil data: periods of stasis, where the population is concentrated in a network of coexisting species, is interrupted by bursts of activity. As the mutation rate increases, the duration and the frequency of bursts increases. Eventually, when the mutation rate reaches a certain threshold, the population is spread evenly throughout the genotype space showing that natural selection only leads to multiple distinct species if adaptation is allowed time to cause fixation.Comment: Paper submitted to Journal of Physics A. 13 pages, 4 figure

    Critical behavior of a one-dimensional monomer-dimer reaction model with lateral interactions

    Full text link
    A monomer-dimer reaction lattice model with lateral repulsion among the same species is studied using a mean-field analysis and Monte Carlo simulations. For weak repulsions, the model exhibits a first-order irreversible phase transition between two absorbing states saturated by each different species. Increasing the repulsion, a reactive stationary state appears in addition to the saturated states. The irreversible phase transitions from the reactive phase to any of the saturated states are continuous and belong to the directed percolation universality class. However, a different critical behavior is found at the point where the directed percolation phase boundaries meet. The values of the critical exponents calculated at the bicritical point are in good agreement with the exponents corresponding to the parity-conserving universality class. Since the adsorption-reaction processes does not lead to a non-trivial local parity-conserving dynamics, this result confirms that the twofold symmetry between absorbing states plays a relevant role in determining the universality class. The value of the exponent δ2\delta_2, which characterizes the fluctuations of an interface at the bicritical point, supports the Bassler-Brown's conjecture which states that this is a new exponent in the parity-conserving universality class.Comment: 19 pages, 22 figures, to be published in Phys. Rev

    Reentrant phase diagram of branching annihilating random walks with one and two offsprings

    Full text link
    We investigate the phase diagram of branching annihilating random walks with one and two offsprings in one dimension. A walker can hop to a nearest neighbor site or branch with one or two offsprings with relative ratio. Two walkers annihilate immediately when they meet. In general, this model exhibits a continuous phase transition from an active state into the absorbing state (vacuum) at a finite hopping probability. We map out the phase diagram by Monte Carlo simulations which shows a reentrant phase transition from vacuum to an active state and finally into vacuum again as the relative rate of the two-offspring branching process increases. This reentrant property apparently contradicts the conventional wisdom that increasing the number of offsprings will tend to make the system more active. We show that the reentrant property is due to the static reflection symmetry of two-offspring branching processes and the conventional wisdom is recovered when the dynamic reflection symmetry is introduced instead of the static one.Comment: 14 pages, Revtex, 4 figures (one PS figure file upon request) (submitted to Phy. Rev. E

    Effects of Noise in a Cortical Neural Model

    Full text link
    Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.

    Branching annihilating random walks with parity conservation on a square lattice

    Full text link
    Using Monte Carlo simulations we have studied the transition from an "active" steady state to an absorbing "inactive" state for two versions of the branching annihilating random walks with parity conservation on a square lattice. In the first model the randomly walking particles annihilate when they meet and the branching process creates two additional particles; in the second case we distinguish particles and antiparticles created and annihilated in pairs. Quite distinct critical behavior is found in the two cases, raising the question of what determines universality in this kind of systems.Comment: 4 pages, 4 EPS figures include

    Universal macroscopic background formation in surface super-roughening

    Full text link
    We study a class of super-rough growth models whose structure factor satisfies the Family-Vicsek scaling. We demonstrate that a macroscopic background spontaneously develops in the local surface profile, which dominates the scaling of the local surface width and the height-difference. The shape of the macroscopic background takes a form of a finite-order polynomial whose order is decided from the value of the global roughness exponent. Once the macroscopic background is subtracted, the width of the resulting local surface profile satisfies the Family-Vicsek scaling. We show that this feature is universal to all super-rough growth models, and we also discuss the difference between the macroscopic background formation and the pattern formation in other models.Comment: 5 pages, LaTex, 1 figure, minor correction

    Current-voltage characteristics of the two-dimensional XY model with Monte Carlo dynamics

    Full text link
    Current-voltage characteristics and the linear resistance of the two-dimensional XY model with and without external uniform current driving are studied by Monte Carlo simulations. We apply the standard finite-size scaling analysis to get the dynamic critical exponent zz at various temperatures. From the comparison with the resistively-shunted junction dynamics, it is concluded that zz is universal in the sense that it does not depend on details of dynamics. This comparison also leads to the quantification of the time in the Monte Carlo dynamic simulation.Comment: 5 pages in two columns including 5 figures, to appear in PR
    corecore