9,830 research outputs found

    Oxygen-Vacancy-Induced Orbital Reconstruction of Ti Ions at the Interface of LaAlO3/SrTiO3 Heterostructures: A Resonant Soft-X-Ray Scattering Study

    Get PDF
    Resonant soft-x-ray scattering measurements have been performed to investigate interface electronic structures of (LaAlO3/SrTiO3) superlattices. Resonant scattering intensities at superlattice reflections show clear evidence of degeneracy lifting in t(2g) states of interface Ti ions. Polarization dependence of intensities indicates the energy of d(xy) states is lower by similar to 1 eV than two other t(2g) states. The energy splitting is insensitive to epitaxial strain. The orbital reconstruction is induced by oxygen vacancies and confined to the interface within two unit cells, indicating charge compensation at the polar interfaces. DOI: 10.1103/PhysRevLett.110.017401X112723Nsciescopu

    Utilization of GelMA with phosphate glass fibers for glial cell alignment

    Get PDF
    Glial cell alignment in tissue engineered constructs is essential for achieving functional outcomes in neural recovery. While gelatin methacrylate (GelMA) hydrogel offers superior biocompatibility along with permissive structure and tailorable mechanical properties, phosphate glass fibers (PGFs) can provide physical cues for directionality of neural growth. Aligned PGFs were fabricated by a melt quenching and fiber drawing method and utilized with synthesized GelMA hydrogel. The mechanical properties of GelMA and biocompatibility of the GelMA-PGFs composite were investigated in vitro using rat glial cells. GelMA with 86% methacrylation degree were photo-crosslinked using 0.1%wt photo-initiator (PI). Photocrosslinking under UV exposure for 60 s was used to produce hydrogels (GelMA-60). PGFs were introduced into the GelMA before crosslinking. Storage modulus and loss modulus of GelMA-60 was 24.73 ± 2.52 and 1.08 ± 0.23 kN/m2 , respectively. Increased cell alignment was observed in GelMA-PGFs compared with GelMA hydrogel alone. These findings suggest GelMA-PGFs can provide glial cells with physical cues necessary to achieve cell alignment. This approach could further be used to achieve glial cell alignment in bioengineered constructs designed to bridge damaged nerve tissue

    Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration

    Get PDF
    Providing appropriate biophysical and biochemical cues to the interface is a facile strategy to enhance the osteogenic ability of metallic implants. Here we exploited this through the incorporation of mesoporous bioactive glass nanoparticles (MBGN) at a high content (1:1 by weight) to a biopolymer chitosan in the electrodeposition process of titanium. The MGBN/chitosan layer thickness, tunable by electrodeposition parameters, exhibited an accelerated ability of apatite mineral induction in a body simulating medium. Of note, the involvement of MBGN could generate nanoscale roughness in a unique range of 10-25 nm. Moreover, the layer showed a slowly releasing profile of ions (calcium and silicate) over weeks at therapeutically relevant doses. The ion-releasing nanotopological surface was demonstrated to alter the preosteoblasts responses in a way favorable for osteogenic differentiation. The combinatory cues of nanotopology (25 nm roughness) and ion release enabled highly accelerated cellular anchorage with somewhat limited spreading area at initial periods. The subsequent osteoblastic differentiation behaviors on the engineered surface, as examined up to 21 days, showed significantly enhanced alkaline phosphate activity and up-regulated expression of bone-associated genes (ALP, Col I, OPN, and OCN). These results indicate that the combinatory cues provided by nanotopology (25 nm roughness) and ions released from MBGN are highly effective in stimulating osteoblastic differentiation and suggest that the MBGN/chitosan may serve as a potential composition for bone implant coatings

    C5 Extract Induces Apoptosis in B16F10 Murine Melanoma Cells through Extrinsic and Intrinsic Apoptotic Pathways and Sub-G1 Phase Arrest

    Get PDF
    Purpose: To investigate the anti-cancer activities of C5 extract (C5E), a new herbal preparation from Korea, on B16F10 cells.Methods: The anti-proliferative effects of C5E were assessed by culturing B16F10 cells in the presence or absence of C5E. Cell cycle progression was analyzed by PI staining using flow cytometry. The quantities of apoptosis-inducing proteins were measured by Western blot.Results: C5E inhibited the proliferation of B16F10 cells but not human keratinocytes. C5E induced S phase arrest by interfering with cell regulatory factors such as cyclins B1, D1, D3, and E, and cyclindependent kinase 2, in B16F10 cells. Furthermore, immunoblot analysis confirmed that treatment with C5E induced apoptosis and cleaved caspase-3, poly (ADP-ribose) polymerase, via extrinsic pathway, whereas Bcl-2 expression was down-regulated. In addition, the suppression of cell proliferation by C5E is through down-regulation of p-Akt, up-regulation of phosphatase and tensin homolog protein expression via phosphoinositol 3 kinase survival signaling pathways in B16F10 cells. The combined cytotoxic effects of C5E and vinblastine generated 10 % increase in activity in contrast to the sum of the inhibitory effects of the individual agents.Conclusion: C5E shows promising anti-cancer activity and can be a useful adjuvant with vinblastine in combination therapeutic treatment of skin cancer.Keywords: Melanoma, Apoptosis, Anti-cancer, p53, Vinblastine, Cell cycle arrest, Caspas

    Visualizing landscapes of the superconducting gap in heterogeneous superconductor thin films: geometric influences on proximity effects

    Full text link
    The proximity effect is a central feature of superconducting junctions as it underlies many important applications in devices and can be exploited in the design of new systems with novel quantum functionality. Recently, exotic proximity effects have been observed in various systems, such as superconductor-metallic nanowires and graphene-superconductor structures. However, it is still not clear how superconducting order propagates spatially in a heterogeneous superconductor system. Here we report intriguing influences of junction geometry on the proximity effect for a 2D heterogeneous superconductor system comprised of 2D superconducting islands on top of a surface metal. Depending on the local geometry, the superconducting gap induced in the surface metal region can either be confined to the boundary of the superconductor, in which the gap decays within a short distance (~ 15 nm), or can be observed nearly uniformly over a distance of many coherence lengths due to non-local proximity effects.Comment: 17 pages, 4 figure

    Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy

    Get PDF
    Nanomaterials combined with phototherapy and multimodal imaging are promising for cancer theranostics. Our aim is to develop fluorescent mesoporous bioglass nanoparticles (fBGn) based on carbon dots (CD) with delivery, triple-mode imaging, and photothermal (PTT) properties for cancer theranostics. A direct and label-free approach was used to prepare multicolor fluorescent fBGn with 3-aminopropyl triethoxysilane as the surface-functionalizing agent. The calcination at 400 °C provided fBGn with high fluorescence intensity originating from the CD. In particular, a triple-mode emission [fluorescence imaging, two-photon (TP), and Raman imaging] was observed which depended on CD nature and surface properties such as surface oxidation edge state, amorphous region, nitrogen passivation of surface state, and crystalline region. The fBGn also exhibited phototherapeutic properties such as photodynamic (PDT) and PTT effects. The antitumor effect of the combined PDT/PTT therapy was significantly higher than that of individual (PDT or PTT) therapy. The fBGn, due to the mesoporous structure, the anticancer drug doxorubicin could be loaded and released in a pH-dependent way to show chemotherapy effects on cancer cells. The in vivo imaging and biocompatibility of fBGn were also demonstrated in a nude mouse model. The fBGn, with the combined capacity of anticancer delivery, triple-mode imaging, and PTT/PDT therapy, are considered to be potentially useful for cancer theranostics

    Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria

    Get PDF
    In recent years, multidrug-resistant (MDR) bacteria have increased rapidly, representing a major threat to human health. This problem has created an urgent need to identify alternatives for the treatment of MDR bacteria. The aim of this study was to identify the antibacterial activity of selenium nanoparticles (SeNPs) and selenium nanowires (SeNWs) against MDR bacteria and assess the potential synergistic effects when combined with a conventional antibiotic (linezolid). SeNPs and SeNWs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), zeta potential, and UV-visible analysis. The antibacterial effects of SeNPs and SeNWs were confirmed by the macro-dilution minimum inhibi-tory concentration (MIC) test. SeNPs showed MIC values against methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vanco-mycin-resistant enterococci (VRE) at concentrations of 20, 80, 320, and >320 μg/mL, respectively. On the other hand, SeNWs showed a MIC value of >320 μg/mL against all tested bacteria. Therefore, MSSA, MRSA, and VRSA were selected for the bacteria to be tested, and SeNPs were selected as the antimicrobial agent for the following experiments. In the time-kill assay, SeNPs at a concentration of 4X MIC (80 and 320 μg/mL) showed bactericidal effects against MSSA and MRSA, respectively. At a concentration of 2X MIC (40 and 160 μg/mL), SeNPs showed bacteriostatic effects against MSSA and bactericidal effects against MRSA, respectively. In the synergy test, SeNPs showed a synergistic effect with linezolid (LZD) through protein degradation against MSSA and MRSA. In conclusion, these results suggest that SeNPs can be candidates for antibacterial substitutes and supplements against MDR bacteria for topical use, such as dressings. However, for use in clinical situations, additional experiments such as toxicity and synergistic mechanism tests of SeNPs are needed

    The Effect of Selenium Nanoparticles on the Osteogenic Differentiation of MC3T3-E1 Cells

    Get PDF
    Reactive oxygen species (ROS) regulate various functions of cells, including cell death, viability, and differentiation, and nanoparticles influence ROS depending on their size and shape. Selenium is known to regulate various physiological functions, such as cell differentiations and anti-inflammatory functions, and plays an important role in the regulation of ROS as an antioxidant. This study aims to investigate the effect of selenium nanoparticles (SeNPs) on the differentiation of osteogenic MC3T3-E1 cells. After fabrication of SeNPs with a size of 25.3 ± 2.6 nm, and confirmation of its oxidase-like activity, SeNPs were added to MC3T3-E1 cells with or without H2O2 : 5~20 µg/mL SeNPs recovered cells damaged by 200 µM H2O2 via the intracellular ROS downregulating role of SeNPs, revealed by the ROS staining assay. The increase in osteogenic maturation with SeNPs was gradually investigated by expression of osteogenic genes at 3 and 7 days, Alkaline phosphatase activity staining at 14 days, and Alizarin red S staining at 28 days. Therefore, the role of SeNPs in regulating ROS and their therapeutic effects on the differentiation of MC3T3-E1 cells were determined, leading to possible applications for bone treatment

    Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes

    Get PDF
    Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.This work was funded by the European Research Council (ERC) grant to S.K.S., EMATTER (# 280078). K.D.F. acknowledges support from the Winston Churchill Foundation of the United States. T.W. thanks the China Scholarship Council (CSC) for funding and the Engineering and Physical Sciences Research Council of the U.K. (EPSRC) Centre for Doctoral Training in Sensor Technologies and Applications (Grant Number: EP/L015889/1) for support

    Three dimensional porous scaffolds derived from collagen, elastin and fibrin proteins orchestrate adipose tissue regeneration

    Get PDF
    Current gold standard to treat soft tissue injuries caused by trauma and pathological condition are autografts and off the shelf fillers, but they have inherent weaknesses like donor site morbidity, immuno-compatibility and graft failure. To overcome these limitations, tissue-engineered polymers are seeded with stem cells to improve the potential to restore tissue function. However, their interaction with native tissue is poorly understood so far. To study these interactions and improve outcomes, we have fabricated scaffolds from natural polymers (collagen, fibrin and elastin) by custom-designed processes and their material properties such as surface morphology, swelling, wettability and chemical cross-linking ability were characterised. By using 3D scaffolds, we comprehensive assessed survival, proliferation and phenotype of adipose-derived stem cells in vitro. In vivo, scaffolds were seeded with adipose-derived stem cells and implanted in a rodent model, with X-ray microtomography, histology and immunohistochemistry as read-outs. Collagen-based materials showed higher cell adhesion and proliferation in vitro as well as higher adipogenic properties in vivo. In contrast, fibrin demonstrated poor cellular and adipogenesis properties but higher angiogenesis. Elastin formed the most porous scaffold, with cells displaying a non-aggregated morphology in vitro while in vivo elastin was the most degraded scaffold. These findings of how polymers present in the natural polymers mimicking ECM and seeded with stem cells affect adipogenesis in vitro and in vivo can open avenues to design 3D grafts for soft tissue repair
    corecore