1,722 research outputs found

    On the existence of a finite-temperature transition in the two-dimensional gauge glass

    Full text link
    Results from Monte Carlo simulations of the two-dimensional gauge glass supporting a zero-temperature transition are presented. A finite-size scaling analysis of the correlation length shows that the system does not exhibit spin-glass order at finite temperatures. These results are compared to earlier claims of a finite-temperature transition.Comment: 4 pages, 2 figure

    Finite Size Scaling and ``perfect'' actions: the three dimensional Ising model

    Get PDF
    Using Finite-Size Scaling techniques, we numerically show that the first irrelevant operator of the lattice λϕ4\lambda\phi^4 theory in three dimensions is (within errors) completely decoupled at λ=1.0\lambda=1.0. This interesting result also holds in the Thermodynamical Limit, where the renormalized coupling constant shows an extraordinary reduction of the scaling-corrections when compared with the Ising model. It is argued that Finite-Size Scaling analysis can be a competitive method for finding improved actions.Comment: 13 pages, 3 figure

    Numerical studies of the two- and three-dimensional gauge glass at low temperature

    Full text link
    We present results from Monte Carlo simulations of the two- and three-dimensional gauge glass at low temperature using the parallel tempering Monte Carlo method. Our results in two dimensions strongly support the transition being at T_c=0. A finite-size scaling analysis, which works well only for the larger sizes and lower temperatures, gives the stiffness exponent theta = -0.39 +/- 0.03. In three dimensions we find theta = 0.27 +/- 0.01, compatible with recent results from domain wall renormalization group studies.Comment: 7 pages, 10 figures, submitted to PR

    Zero Temperature Glass Transition in the Two-Dimensional Gauge Glass Model

    Full text link
    We investigate dynamic scaling properties of the two-dimensional gauge glass model for the vortex glass phase in superconductors with quenched disorder. From extensive Monte Carlo simulations we obtain static and dynamic finite size scaling behavior, where the static simulations use a temperature exchange method to ensure convergence at low temperatures. Both static and dynamic scaling of Monte Carlo data is consistent with a glass transition at zero temperature. We study a dynamic correlation function for the superconducting order parameter, as well as the phase slip resistance. From the scaling of these two functions, we find evidence for two distinct diverging correlation times at the zero temperature glass transition. The longer of these time scales is associated with phase slip fluctuations across the system that lead to finite resistance at any finite temperature, while the shorter time scale is associated with local phase fluctuations.Comment: 8 pages, 10 figures; v2: some minor correction

    Scaling and finte-size-scaling in the two dimensional random-coupling Ising ferromagnet

    Full text link
    It is shown by Monte Carlo method that the finite size scaling (FSS) holds in the two dimensional random-coupled Ising ferromagnet. It is also demonstrated that the form of universal FSS function constructed via novel FSS scheme depends on the strength of the random coupling for strongly disordered cases. Monte Carlo measurements of thermodynamic (infinite volume limit) data of the correlation length (Ο\xi) up to Ο≃200\xi \simeq 200 along with measurements of the fourth order cumulant ratio (Binder's ratio) at criticality are reported and analyzed in view of two competing scenarios. It is demonstrated that the data are almost exclusively consistent with the scenario of weak universality.Comment: 9 pages, 4figuer

    The four dimensional site-diluted Ising model: a finite-size scaling study

    Get PDF
    Using finite-size scaling techniques, we study the critical properties of the site-diluted Ising model in four dimensions. We carry out a high statistics Monte Carlo simulation for several values of the dilution. The results support the perturbative scenario: there is only the Ising fixed point with large logarithmic scaling corrections. We obtain, using the Perturbative Renormalization Group, functional forms for the scaling of several observables that are in agreement with the numerical data.Comment: 30 pages, 8 postscript figure

    The three-dimensional randomly dilute Ising model: Monte Carlo results

    Get PDF
    We perform a high-statistics simulation of the three-dimensional randomly dilute Ising model on cubic lattices L3L^3 with L≀256L\le 256. We choose a particular value of the density, x=0.8, for which the leading scaling corrections are suppressed. We determine the critical exponents, obtaining Îœ=0.683(3)\nu = 0.683(3), η=0.035(2)\eta = 0.035(2), ÎČ=0.3535(17)\beta = 0.3535(17), and α=−0.049(9)\alpha = -0.049(9), in agreement with previous numerical simulations. We also estimate numerically the fixed-point values of the four-point zero-momentum couplings that are used in field-theoretical fixed-dimension studies. Although these results somewhat differ from those obtained using perturbative field theory, the field-theoretical estimates of the critical exponents do not change significantly if the Monte Carlo result for the fixed point is used. Finally, we determine the six-point zero-momentum couplings, relevant for the small-magnetization expansion of the equation of state, and the invariant amplitude ratio RΟ+R^+_\xi that expresses the universality of the free-energy density per correlation volume. We find RΟ+=0.2885(15)R^+_\xi = 0.2885(15).Comment: 34 pages, 7 figs, few correction
    • 

    corecore