169,086 research outputs found

    Demonstration of dispersive rarefaction shocks in hollow elliptical cylinder chains

    Full text link
    We report an experimental and numerical demonstration of dispersive rarefaction shocks (DRS) in a 3D-printed soft chain of hollow elliptical cylinders. We find that, in contrast to conventional nonlinear waves, these DRS have their lower amplitude components travel faster, while the higher amplitude ones propagate slower. This results in the backward-tilted shape of the front of the wave (the rarefaction segment) and the breakage of wave tails into a modulated waveform (the dispersive shock segment). Examining the DRS under various impact conditions, we find the counter-intuitive feature that the higher striker velocity causes the slower propagation of the DRS. These unique features can be useful for mitigating impact controllably and efficiently without relying on material damping or plasticity effects

    High-performance Schottky diodes endure high temperatures

    Get PDF
    Fabrication process and aluminum/GaAs (gallium arsenide) coupling are used to produce Schottky diodes that have high cutoff frequencies and can withstand operating temperatures in excess of 500 C

    A Schematic Model For Density-Dependent Vector Meson Masses

    Get PDF
    A schematic two-level model consisting of a "collective" bosonic state and an "elementary" meson is constructed that provides interpolation from a hadronic description (a la Rapp/Wambach) to B/R scaling for the description of properties of vector mesons in dense medium. The development is based on a close analogy to the degenerate schematic model of Brown for giant resonances in nuclei.Comment: 20 pages, latex with 8 figures: Talk given by GEB at AIP Klaus Kinder-Geiger Memorial Meeting, 3 October 199

    Graphyne: Hexagonal network of carbon with versatile Dirac cones

    Full text link
    We study alpha, beta, and gamma graphyne, a class of graphene allotropes with carbon triple bonds, using a first-principles density-functional method and tight-binding calculation. We find that graphyne has versatile Dirac cones and it is due to remarkable roles of the carbon triple bonds in electronic and atomic structures. The carbon triple bonds modulate effective hopping matrix elements and reverse their signs, resulting in Dirac cones with reversed chirality in alpha graphyne, momentum shift of the Dirac point in beta graphyne, and switch of the energy gap in gamma graphyne. Furthermore, the triple bonds provide chemisorption sites of adatoms which can break sublattice symmetry while preserving planar sp2-bonding networks. These features of graphyne open new possibilities for electronic applications of carbon-based two-dimensional materials and derived nanostructures.Comment: 5 pages, 5 figures, 1 tabl

    Non-volatile bistability effect based on electrically controlled phase transition in scaled magnetic semiconductor nanostructures

    Full text link
    We explore the bistability effect in a dimensionally scaled semiconductor nanostruncture consisting of a diluted magnetic semiconductor quantum dot (QD) and a reservoir of itinerant holes separated by a barrier. The bistability stems from the magnetic phase transition in the QD mediated by the changes in the hole population. Our calculation shows that when properly designed, the thermodynamic equilibrium of the scaled structure can be achieved at two different configurations; i.e., the one with the QD in a ferromagnetic state with a sufficient number of holes and the other with the depopulated QD in a paramagnetic state. Subsequently, the parameter window suitable for this bistability formation is discussed along with the the conditions for the maximum robustness/non-volatility. To examine the issue of scaling, an estimation of the bistabiity lifetime is made by considering the thermal fluctuation in the QD hole population via the spontaneous transitions. A numerical evaluation is carried out for a typical carrier-mediated magnetic semiconductor (e.g., GaMnAs) as well as for a hypothetical case of high Curie temperature for potential room temperature operation.Comment: 9 pages, 7 figure
    corecore