27 research outputs found
I Will Like It Later But Not Now: The Roles of Temporal Distance and Guilt in Hedonic Product Evaluation
How and why does temporal distance influence consumers evaluation of future hedonic consumption? Drawing upon the construal level theory, we propose that guilt is a lower-level construal than hedonic pleasure and
becomes salient in the immediate versus distant consumption. As such, we hypothesize that consumers evaluate future hedonic consumption less positively as temporal distance becomes smaller. We find that temporal distance influences product evaluation when the product is framed as a hedonic option, but not when it is framed as a utilitarian one (study 1). The effect of
temporal distance is mediated by anticipated guilt (study 2).This research was financially supported from the Management Research Center, College of Business Administration, Seoul National University
A new power prediction method using ship in-service data: a case study on a general cargo ship
To increase energy efficiency and reduce greenhouse gas (GHG) emissions in the shipping industry, an accurate prediction of the ship performance at sea is crucial. This paper proposes a new power prediction method based on minimizing a normalized root mean square error (NRMSE) defined by comparing the results of the power prediction model with the ship in-service data for a given vessel. The result is a power prediction model tuned to fit the ship for which in-service data was applied. A general cargo ship is used as a test case. The performance of the proposed approach is evaluated in different scenarios with the artificial neural network (ANN) method and the traditional power prediction models. In all studied scenarios, the proposed method shows better performance in predicting ship power. Up to 86% percentage difference between the NRMSEs of the best and worst power prediction models is also reported
Nondestructive discrimination of Bell states between distant parties
Identifying Bell state without destroying it is frequently dealt with in
nowadays quantum technologies such as quantum communication and quantum
computing. In practice, quantum entangled states are often distributed among
distant parties, and it might be required to determine them separately at each
location, without inline communication between parties. We present a scheme for
discriminating an arbitrary Bell state distributed to two distant parties
without destroying it. The scheme requires two entangled states that are
pre-shared between the parties, and we show that without these ancillary
resources, the probability of non-destructively discriminating the Bell state
is bounded by 1/4, which is the same as random guessing. Furthermore, we
demonstrate a proof-of-principle experiment through an IonQ quantum computer
that our scheme can surpass classical bounds when applied to practical quantum
processor.Comment: 9 pages including Appendix, 7 figures and 2 table
The Relationship Between Thiamine Intake and Long Sleep Duration: Results From the Korea National Health and Nutrition Examination Survey
Objectives: Thiamine is thought to modify sleeping patterns, while alcohol use diminishes internal thiamine levels. We investigated the association between thiamine intake and sleep duration and explored possible heterogeneity in the effect according to alcohol use. Methods: In total, 15 384 participants aged 19-64 were obtained from the Korea National Health and Nutrition Examination Survey 2012-2016. Nutrient intake, including thiamine, was measured using a food frequency questionnaire. Sleep duration was measured by a self-reported questionnaire. The highest thiamine intake quartile was set as the reference group. Participants were divided into 3 groups, with 7-8 hours of daily sleep as a reference group and those who slept more or less than that as “oversleeping” and “insufficient sleeping,” respectively. Multivariate logistic regression was used, adjusting for socioeconomic, medical, and nutritional factors. Additionally, participants were stratified according to high-risk alcohol use defined by the World Health Organization standards on alcohol use. Results: Low thiamine intake was associated with oversleeping (Q3: odds ratio [OR], 1.06; 95% confidence interval [CI], 0.86 to 1.32; Q2: OR, 1.24; 95% CI, 0.99 to 1.55; Q1: OR, 1.49; 95% CI, 1.16 to 1.91) and showed a significant trend for higher ORs at lower intake levels (p-trend<0.001). The effect was stronger in the high-risk alcohol use group (Q1: OR, 1.78; 95% CI, 1.28 to 2.49). Conclusions: Low thiamine intake was associated with oversleeping, and alcohol use intensified that association. These results were found in a context where overt clinical symptoms due to thiamine deficiency are considered rare. More awareness of the potential relationship of thiamine intake with oversleeping and its related risks should be considered
Quantum secure learning with classical samples
Studies addressing the question “Can a learner complete the learning securely?” have recently been spurred from the standpoints of fundamental theory and potential applications. In the relevant context of this question, we present a classical-quantum hybrid sampling protocol and define a security condition that allows only legitimate learners to prepare a finite set of samples that guarantees the success of the learning; the security condition excludes intruders. We do this by combining our security concept with the bound of the so-called probably approximately correct (PAC) learning. We show that while the lower bound on the learning samples guarantees PAC learning, an upper bound can be derived to rule out adversarial learners. Such a secure learning condition is appealing, because it is defined only by the size of samples required for the successful learning and is independent of the algorithm employed. Notably, the security stems from the fundamental quantum no-broadcasting principle. No such condition can thus occur in any classical regime, where learning samples can be copied. Owing to the hybrid architecture, our scheme also offers a practical advantage for implementation in noisy intermediate-scale quantum devices
Signal Amplification via Biological Self-Assembly of Surface-Engineered Quantum Dots for Multiplexed Subattomolar Immunoassays and Apoptosis Imaging
The parallel and highly sensitive detection of biomolecules is of paramount importance to understand biological functions at the single cell level and for various medical diagnoses. Surface-engineered semiconductor quantum dots (QDs) have been demonstrated to act as a signal amplifiable reporter in immunoassays. This takes advantage of the QDs' robustness against self-quenching in proximity and the tunability of their surface properties. A streptavidin (SA) and biotin QD conjugate pair containing a zwitterionic surface modification was designed for QD self-assembly with minimal nonspecific adsorption. Typical sandwich-type immunoassay procedures were adopted, and the targeted protein binding events were effectively transduced and amplified by the fluorescence of the SA biotin QD conjugates. The detection limit of myoglobin in 100% serum was determined to be at the subattomolar (tens of copies per milliliter) level, which was achieved by using 100 cycles of the layer-by-layer QD assembly. Adsorption kinetics studies and Monte Carlo simulations revealed that this highly sensitive signal amplification was accomplished by the zwitterionic surface, which gave equilibrium constants 5 orders of magnitude larger for specific binding than for nonspecific binding. The QD conjugates showed an effective multivalency of two, which resulted in a broad linear dynamic range spanning 9 orders of magnitude of target protein concentrations. The assay can be highly miniaturized and multiplexed, and as a proof-of-concept, parallel and rapid detection of four different cancer markers has been successfully demonstrated. To demonstrate that this QD signal amplification can be a universal platform, sensitive imaging and early detection of apoptotic cells were also showcased.X112924sciescopu
Signal Amplification <i>via</i> Biological Self-Assembly of Surface-Engineered Quantum Dots for Multiplexed Subattomolar Immunoassays and Apoptosis Imaging
The parallel and highly sensitive detection of biomolecules is of paramount importance to understand biological functions at the single cell level and for various medical diagnoses. Surface-engineered semiconductor quantum dots (QDs) have been demonstrated to act as a signal amplifiable reporter in immunoassays. This takes advantage of the QDs’ robustness against self-quenching in proximity and the tunability of their surface properties. A streptavidin (SA) and biotin QD conjugate pair containing a zwitterionic surface modification was designed for QD self-assembly with minimal nonspecific adsorption. Typical sandwich-type immunoassay procedures were adopted, and the targeted protein binding events were effectively transduced and amplified by the fluorescence of the SA–biotin QD conjugates. The detection limit of myoglobin in 100% serum was determined to be at the subattomolar (tens of copies per milliliter) level, which was achieved by using 100 cycles of the layer-by-layer QD assembly. Adsorption kinetics studies and Monte Carlo simulations revealed that this highly sensitive signal amplification was accomplished by the zwitterionic surface, which gave equilibrium constants 5 orders of magnitude larger for specific binding than for nonspecific binding. The QD conjugates showed an effective multivalency of two, which resulted in a broad linear dynamic range spanning 9 orders of magnitude of target protein concentrations. The assay can be highly miniaturized and multiplexed, and as a proof-of-concept, parallel and rapid detection of four different cancer markers has been successfully demonstrated. To demonstrate that this QD signal amplification can be a universal platform, sensitive imaging and early detection of apoptotic cells were also showcased