13 research outputs found

    컨버전스의 현실화 : 다중 미디어 실천에 관한 인간, 문화, 사회적 관점

    No full text
    Beyond the limit of a techno-industrial, functionalist perspective on media convergence, we aim to examine the mechanisms and the meanings of the actualization of convergence through human practices of multiple media use. The actualization of convergence is defined as peoples practice of multiple media creating and expressing concrete cultural modes and social relations in media convergence ecology. Drawing upon those theoretical perspectives, this research approaches the realities of convergence in Korean society by conducting in-depth interviews with multiple media users. By and large, the research shows that the users are constructing their everyday lives into media rituals on the personal, cultural and social dimensions. Firstly, we see convergence subjectivities that embody instantaneous, vagrant and weary experiences with more convenience and freedom given by a media-rich environment. Secondly, we see a culture in which the users conflicts as well as fuses with various sub-culture groups and cultural industrial organizations. Thirdly, we see popular social sentiments that voluntarily comply with and get crazed by the hierarchical emotional relationships of adoration and admiration, which seems to be in contrast with the technologically egalitarian designs of social networking

    Ultrasound‐guided central venous catheterization via internal jugular vein in a patient with subcutaneous neck emphysema: A case report

    No full text
    Abstract In patients with subcutaneous neck emphysema, ultrasound images of the internal jugular vein are unclear due to air bubbles. Central venous catheterization can be safely achieved by pushing the accumulated air laterally using an ultrasound probe

    Lipid Emulsion Enhances Vasoconstriction Induced by Dexmedetomidine in the Isolated Endothelium-Intact Aorta

    No full text
    This study aimed to examine the effect of lipid emulsion (LE) on the vasoconstriction induced by dexmedetomidine (DMT) in the isolated rat aorta and elucidate the associated cellular mechanism. The effect of LE, NW-nitro-L-arginine methyl ester (L-NAME), and methyl-β-cyclodextrin (MβCD) on the DMT-induced contraction was examined. We investigated the effect of LE on the DMT-induced cyclic guanosine monophosphate (cGMP) formation and DMT concentration. The effect of DMT, LE, 4-Amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine,4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), and rauwolscine on the phosphorylation of endothelial nitric oxide synthase (eNOS), caveolin-1, and Src kinase was examined in the human umbilical vein endothelial cells. L-NAME, MβCD, and LE (1%, standardized mean difference (SMD): 2.517) increased the DMT-induced contraction in the endothelium-intact rat aorta. LE (1%) decreased the DMT (10−6 M) concentration (SMD: −6.795) and DMT-induced cGMP formation (SMD: −2.132). LE (1%) reversed the DMT-induced eNOS (Ser1177 and Thr496) phosphorylation. PP2 inhibited caveolin-1 and eNOS phosphorylation induced by DMT. DMT increased the Src kinase phosphorylation. Thus, LE (1%) enhanced the DMT-induced contraction by inhibition of NO synthesis, which may be caused by the decreased DMT concentration. DMT-induced NO synthesis may be caused by the increased eNOS (Ser1177) phosphorylation and decreased eNOS (Thr495) phosphorylation potentially mediated by Src kinase-induced caveolin-1 phosphorylation

    Lipofundin MCT/LCT Inhibits Levcromakalim-Induced Vasodilation by Inhibiting Endothelial Nitric Oxide Release

    No full text
    The goal of this study was to examine the effect of lipid emulsion on the vasodilation induced by ATP-sensitive potassium (KATP) channels in isolated rat aortae and the underlying mechanism. The effects of Intralipid, containing 100% long-chain fatty acids, and Lipofundin MCT/LCT, containing 50% long-chain fatty acids plus 50% medium-chain fatty acids, on the vasodilation induced by levcromakalim in endothelium-intact aorta with or without NW-nitro-L-arginine methyl ester (L-NAME) and in endothelium-denuded aorta were examined. The effects of L-arginine, L-NAME, glibenclamide, and Lipofundin MCT/LCT, alone or combined, on the levcromakalim-induced vasodilation were examined. Lipofundin MCT/LCT inhibited the levcromakalim-induced vasodilation of isolated endothelium-intact aortae, whereas Intralipid did not. In addition, Lipofundin MCT/LCT had no effect on the levcromakalim-induced vasodilation of endothelium-denuded rat aortae and endothelium-intact aortae with L-NAME. L-arginine and Lipofundin MCT/LCT produced more levcromakalim-induced vasodilation than Lipofundin MCT/LCT alone. Glibenclamide inhibited levcromakalim-induced vasodilation. Levcromakalim did not significantly alter endothelial nitric oxide synthase phosphorylation, whereas Lipofundin MCT/LCT decreased cyclic guanosine monophosphate. Lipofundin MCT/LCT did not significantly alter levcromakalim-induced membrane hyperpolarization. Taken together, these results suggest that Lipofundin MCT/LCT inhibits the vasodilation induced by levcromakalim by inhibiting basally released endothelial nitric oxide, which seems to occur through medium-chain fatty acids

    A Planar Cyclopentadithiophene–Benzothiadiazole-Based Copolymer with sp<sup>2</sup>‑Hybridized Bis(alkylsulfanyl)methylene Substituents for Organic Thermoelectric Devices

    No full text
    A semicrystalline p-type thermoelectric conjugated polymer based on a polymer backbone of cyclopentadithiophene and benzothiadiazole, poly­[(4,4′-(bis­(hexyldecyl­sulfanyl)­methylene)­cyclopenta­[2,1-<i>b</i>:3,4-<i>b</i>′]­dithiophene)-<i>alt</i>-(benzo­[<i>c</i>]­[1,2,5]­thiadiazole)] (PCPDTSBT), is designed and synthesized by replacing normal alkyl side-chains with bis­(alkylsulfanyl)­methylene substituents. The sp<sup>2</sup>-hybridized olefinic bis­(alkylsulfanyl)­methylene side-chains and the sulfur–sulfur (S–S) chalcogen interactions extend a chain planarity with strong interchain packing, which is confirmed by density functional calculations and morphological studies, i.e., grazing incidence X-ray scattering measurement. The doping, electrical, morphological, and thermoelectric characteristics of PCPDTSBT are investigated by comparison with those of poly­[(4,4′-bis­(2-ethylhexyl)­cyclopenta­[2,1-<i>b</i>:3,4-<i>b</i>′]­dithiophene)-<i>alt</i>-(benzo­[<i>c</i>]­[1,2,5]­thiadiazole)] (PCPDTBT) with ethylhexyl side-chains. Upon doping with a Lewis acid, B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, the maximum electrical conductivity (7.47 S cm<sup>–1</sup>) of PCPDTSBT is ∼1 order higher than that (0.65 S cm<sup>–1</sup>) of PCPDTBT, and the best power factor is measured to be 7.73 μW m<sup>–1</sup> K<sup>–2</sup> for PCPDTSBT with doping 9 mol % of B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>. The Seebeck coefficient–electrical conductivity relation is analyzed by using a charge transport model for polymers, suggesting that the doped PCPDTSBT film has superb charge transport property based on a high crystallinity with olefinic side-chains. This study emphasizes the importance of side-chain engineering by using the sp<sup>2</sup>-hybridized olefinic substituents to modulate interchain packing, crystalline morphology, and the resulting electrical properties
    corecore