9,333 research outputs found

    Effect of Al addition on microstructure of AZ91D

    Get PDF
    Casting is a net shape or near net shape forming process so work-hardening will not be applicable for improving properties of magnesium cast alloys. Grain refinement, solid-solution strengthening, precipitation hardening and specially designed heat treatment are the techniques used to enhance the properties of these alloys. This research focusses on grain refinement of magnesium alloy AZ91D, which is a widely used commercial cast alloy. Recently, Al-B based master alloys have shown potential in grain refining AZ91D. A comparative study of the grain refinement of AZ91D by addition of 0.02wt%B, 0.04wt%B, 0.1wt%B, 0.5wt%B and 1.0wt%B of A1-5B master alloy and equivalent amount of solute element aluminium is described in this paper. Hardness profile of AZ91D alloyed with boron and aluminium is compared

    Organic bilayer photovoltaics for efficient indoor light harvesting

    Get PDF
    Indoor organic photovoltaics (OPVs) are a potential niche application for organic semiconductors due to their strong and well-matched absorption with the emission of indoor lighting. However, due to extremely low photocurrent generation, the device parameters critical for efficient indoor OPVs differ from those under 1 Sun conditions. Herein, these critical device parameters—recombination loss and shunt resistance (Rsh)—are identified and it is demonstrated that bilayer OPVs are suitable for indoor PV applications. Compared to bulk-heterojunction (BHJ), the open-circuit voltage loss of bilayer devices under low light intensities is much smaller, consistent with a larger surface photovoltage response, indicating suppressed recombination losses. The bilayer devices show a higher fill factor at low light intensities, resulting from high Rsh afforded by the ideal interfacial contacts between the photoactive and the charge transport layers. The high Rsh enables bilayer devices to perform well without a light-soaking process. Finally, the charge carriers are extracted rapidly in bilayers, which are attributed to strongly suppressed trap states possibly induced by isolated domains and non-ideal interfacial contacts in BHJs. This study highlights the excellent suitability of bilayer OPVs for indoor applications and demonstrates the importance of device architecture and interfacial structures for efficient indoor OPVs

    Lamb Wave Imaging and V(Z) Using a Broadband System

    Get PDF
    The work reported here has been motivated by the need to characterise thin ceramic coatings on metallic substrates. In addition to measuring the elastic constants of the coating, which among other things is dependent on the deposition technique, it is desirable to inspect the condition of the interface between the coating and the substrate. One deposition technique involves plasma-spraying of the ceramic onto a grit-blasted metal surface. Although the top surface of the film can be polished for ultrasonic inspection, the film/substrate interface will be very rough. The Lamb wave V(z) technique has been demonstrated to be effective for the calculation of the elastic constants of thin films on substrates. The effect of surface roughness on the Lamb wave dispersion curves must be well understood however, before this method can be applied to the problem of interest here. As such, a series of tests have been performed on glass slides that have different degrees of roughness introduced on one surface

    Fouling and its control in membrane distillation-A review

    Full text link
    © 2014 Elsevier B.V. Membrane distillation (MD) is an emerging thermally-driven technology that poses a lot of promise in desalination, and water and wastewater treatment. Developments in membrane design and the use of alternative energy sources have provided much improvement in the viability of MD for different applications. However, fouling of membranes is still one of the major issues that hounds the long-term stability performance of MD. Membrane fouling is the accumulation of unwanted materials on the surface or inside the pores of a membrane that results to a detrimental effect on the overall performance of MD. If not addressed appropriately, it could lead to membrane damage, early membrane replacement or even shutdown of operation. Similar with other membrane separation processes, fouling of MD is still an unresolved problem. Due to differences in membrane structure and design, and operational conditions, the fouling formation mechanism in MD may be different from those of pressure-driven membrane processes. In order to properly address the problem of fouling, there is a need to understand the fouling formation and mechanism happening specifically for MD. This review details the different foulants and fouling mechanisms in the MD process, their possible mitigation and control techniques, and characterization strategies that can be of help in understanding and minimizing the fouling problem

    Characteristics of membrane fouling by consecutive chemical cleaning in pressurized ultrafiltration as pre-treatment of seawater desalination

    Full text link
    © 2015 Elsevier B.V. Chemical cleaning of membranes is one of the most important strategies in pressurized hollow fiber ultrafiltration (UF) as a pre-treatment for seawater desalination. Various physical cleaning strategies such as backwashing, aeration and air-scrubbing or chemically enhanced backwashing (CEB) have been investigated in order to remove foulants from the UF membrane. However, the limitation in their cleaning effects being found during long-term operation leads to the need of cleaning in place (CIP) for the recovery of membrane performance. In this study, we used oxalic acid and sodium hypochlorite as chemical cleaning agents. The cleaning in series of oxalic acid-sodium hypochlorite-oxalic acid showed the optimal cleaning efficiency and was applied for the consecutive chemical cleaning. The recovery efficiency of the CIP after first, second, third and fourth cleanings was 96.8%, 95.8%, 98.3% and 99.9%, respectively. It was almost fully recovered to the previous recovered value. However, membrane surface structure was deformed by contact with chemical cleaning agents during cleaning time, because, hydrophilic inorganic foulants are still adhered on the membrane surface even after several cleanings although hydrophobic organic foulants were removed easily by chemical cleaning. An improved CIP strategy should be developed to remove hydrophilic foulants for long-term operation of desalination plants

    KIAA1114, a full-length protein encoded by the trophinin gene, is a novel surface marker for isolating tumor-initiating cells of multiple hepatocellular carcinoma subtypes

    Get PDF
    Identification of novel biomarkers for tumor-initiating cells (TICs) is of critical importance for developing diagnostic and therapeutic strategies against cancers. Here we identified the role of KIAA1114, a full-length translational product of the trophinin gene, as a distinctive marker for TICs in human liver cancer by developing a DNA vaccine-induced monoclonal antibody targeting the putative extracellular domain of KIAA1114. Compared with other established markers of liver TICs, KIAA1114 was unique in that its expression was detected in both alpha fetoprotein (AFP)-positive and AFP-negative hepatocellular carcinoma (HCC) cell lines with the expression levels of KIAA1114 being positively correlated to their tumorigenic potentials. Notably, KIAA1114 expression was strongly detected in primary hepatic tumor, but neither in the adjacent non-tumorous tissue from the same patient nor normal liver tissue. KIAA1114(high) cells isolated from HCC cell lines displayed TIC-like features with superior functional and phenotypic traits compared to their KIAA1114(low) counterparts, including tumorigenic abilities in xenotransplantation model, in vitro colony- and spheroid-forming capabilities, expression of stemness-associated genes, and migratory capacity. Our findings not only address the value of a novel antigen, KIAA1114, as a potential diagnostic factor of human liver cancer, but also as an independent biomarker for identifying TIC populations that could be broadly applied to the heterogeneous HCC subtypes.X1110Nsciescopu

    Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma

    Get PDF
    Irradiation in conjunction with gene therapy is considered for efficient cancer treatment. Mesenchymal stem cells (MSCs), due to their irradiation-promotable tumor tropism, are ideal delivery vehicles for gene therapy. In this study, we investigated whether treatment with radiation and interleukin (IL)-12-expressing MSCs (MSCs/IL-12) exerts improved antitumor effects on murine metastatic hepatoma. HCa-I and Hepa 1-6 cells were utilized to generate heterotopic murine hepatoma models. Tumor-bearing mice were treated with irradiation or MSCs/IL-12 alone, or a combination. Monocyte chemoattractant protein-1 (MCP-1/CCL2) expression was assessed in irradiated hepatoma tissues to confirm a chemotactic effect. Combination treatment strategies were established and their therapeutic efficacies were evaluated by monitoring tumor growth, metastasis and survival rate. IL-12 expression was assessed and the apoptotic activity and immunological alterations in the tumor microenvironment were examined. MCP-1/CCL2 expression and localization of MSCs/IL-12 increased in the irradiated murine hepatoma cells. The antitumor effects, including suppression of pulmonary metastasis and survival rate improvements, were increased by the combination treatment with irradiation and MSCs/IL-12. IL-12 expression was increased in tumor cells, causing proliferation of cluster of differentiation 8(+) T-lymphocytes and natural killer cells. The apoptotic activity increased, indicating that the cytotoxicity of immune cells was involved in the antitumor effect of the combined treatment. Treatment with irradiation and MSCs/IL-12 showed effectiveness in treating murine metastatic hepatoma. IL-12-induced proliferation of immune cells played an important role in apoptosis of tumor cells. Our results suggest that treatment with irradiation and MSCs/IL-12 may be a useful strategy for enhancing antitumor activity in metastatic hepatoma. What's new? Mesenchymal stem cells (MSCs) are promising gene-delivery vehicles, with the potential to improve antitumor effects when used in combination with existing therapies. In the present study, the combined use of interleukin (IL)-12-expressing MSCs (MSCs/IL-12) and radiation therapy increased antitumor activity in murine metastatic hepatoma, a model that is representative of human metastatic hepatocellular carcinoma (HCC), which affects nearly half of HCC patients. Treatment with MSCs/IL-12 resulted in increased IL-12 expression in tumor cells and immune cell proliferation. Immune cell cytotoxicity, evidenced by increased apoptotic activity, appeared to play a role in MSCs/IL-12 augmentation of antitumor effects.1178Ysciescopu

    Optical spectroscopic studies of photochemically oxidized single-walled carbon nanotubes

    Get PDF
    ArticleNANOTECHNOLOGY. 20(10): (2009)journal articl

    Robust, Conducting, and Transparent Polymer Composites using Surface-Modified and Individualized Double-Walled Carbon Nanotubes

    Get PDF
    This is the pre-peer reviewed version of the following article: ADVANCED MATERIALS. 20(23):4509-4512 (2008), which has been published in final form at 10.1002/adma.200801659.ArticleADVANCED MATERIALS. 20(23):4509-4512 (2008)journal articl

    Growth characteristics and productivity of tall fescue new variety ‘Purumi’ in South Korea

    Get PDF
    A new tall fescue variety (Festuca arundinacea Schreb.) named ‘Purumi’ was developed by the National Institute of Animal Science, Rural Development Administration, South Korea from 1999 to 2007. For synthetic seed  production of this new variety, 5 superior clones: EFa9108, EFa0010, EFa0020, EFa0108 and EFa0202 were selected and polycrossed. The agronomic growth characteristics and forage production capability of the seeds were studied at Cheonan from 2004 to 2005, and regional trials were conducted in Cheonan, Pyungchang, Jeju and Jinju from 2008 to 2010. Purumi showed enhanced winter hardiness, disease resistance, and regrowth ability as compared to Fawn. The dry matter yield of Purumi was about 5.6% (16.821 kg/ha) higher than that of Fawn. However, the  nutritive value of both varieties was similar. Since this new variety of tall fescue, Purumi has been developed and distributed with its most  remarkable adaptability for Korean climates and superior value as a livestock feed, it is expected to play an important role in restoration of the pasture industry in Korea.Key words: Tall fescue, Purumi, variety, forage, grassland
    corecore