37,816 research outputs found

    Color Octet Scalar Bound States at the LHC

    Full text link
    One possible extension of the Standard Model scalar sector includes SU(2)_L doublet scalars that are color octets rather than singlets. We focus on models in which the couplings to fermions are consistent with the principle of minimal flavor violation (MFV), in which case these color octet scalars couple most strongly to the third generation of quarks. When the Yukawa coupling of color octet scalars to Standard Model fermions is less than unity, these states can live long enough to bind into color-singlet spin-0 hadrons, which we call octetonia. In this paper, we consider the phenomenology of octetonia at the Large Hadron Collider (LHC). Predictions for their production via gluon-gluon fusion and their two-body decays into Standard Model gauge bosons, Higgs bosons, and \bar{t}t are presented.Comment: 13 pages, 5 figures, published versio

    Reimplanting Previously Infected Device in the Same Patient: A Clever Way to Provide Essential Therapy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108366/1/pace12457.pd

    Deforming tachyon kinks and tachyon potentials

    Full text link
    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed.Comment: To appear in JHEP, 19 pages, 5 eps figures, minor changes and one reference adde

    Searching for Dust around Hyper Metal-Poor Stars

    Get PDF
    We examine the mid-infrared fluxes and spectral energy distributions for metal-poor stars with iron abundances [Fe/H] 5\lesssim-5, as well as two CEMP-no stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excess. These non-detections rule out many types of circumstellar disks, e.g. a warm debris disk (T ⁣ ⁣290T\!\le\!290 K), or debris disks with inner radii 1\le1 AU, such as those associated with the chemically peculiar post-AGB spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g. a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 microns is detected at the 2-σ\sigma level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.Comment: Accepted for publication in Ap

    Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering

    Full text link
    We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors of the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive 12^{12}C(νμ,μ\nu_\mu,\mu^-)XX cross sections using a relativistic Fermi gas model with the calculated bound nucleon form factors. The effect of the bound nucleon form factors for this reaction is a reduction of \sim8% for the total cross section, relative to that calculated with the free nucleon form factors.Comment: Latex, 11 pages, 3 figures, version to appear in Phys. Rev. C (Brief Report
    corecore