1,646 research outputs found

    D0 dimuon charge asymmetry from B_s system with Z' couplings and the recent LHCb result

    Full text link
    The D0 collaboration has announced the observation of the like-sign dimuon charge asymmetry since 2010, which has more than 3\sigma deviation from the Standard Model prediction. One of the promising explanation is considering the existence of flavor changing Z' couplings to the b and s quarks which can contribute to the off-diagonal decay width in the B_s - \bar{B}_s mixing. Model construction is highly constrained by the recent LHCb data of 1fb^{-1} integrated luminosity . In this paper, we analyze the experimental constraints in constructing new physics models to explain the dimuon charge asymmetry from the CP violation of the B_s system. We present limits on Z' couplings and show that it is impossible to obtain the 1\sigma range of the dimuon charge asymmetry without the new contribution in the B_d system. Even with arbitrary contribution in the B_d system, the new couplings must be in the fine tuned region.Comment: 34 pages, 12 figures, Additional analyses and references are updated. (Conclusion unchanged.

    New Vector Boson Near the Z-pole and the Puzzle in Precision Electroweak Data

    Full text link
    We show that a Z' with suppressed couplings to the electron compared to the Z-boson, with couplings to the b-quark, and with a mass close to the mass of the Z-boson, provides an excellent fit to forward-backward asymmetry of the b-quark and R_b measured on the Z-pole and ±2\pm 2 GeV off the Z-pole, and to A_e obtained from the measurement of left-right asymmetry for hadronic final states. It also leads to a significant improvement in the total hadronic cross section on the Z-pole and R_b measured at energies above the Z-pole. In addition, with a proper mass, it can explain the excess of ZbbˉZb\bar b events at LEP in the 90-105 GeV region of the bbˉb\bar b invariant mass.Comment: 10 pages, 1 figur

    Z' near the Z-pole

    Full text link
    We present a fit to precision electroweak data in the standard model extended by an additional vector boson, Z', with suppressed couplings to the electron compared to the Z boson, with couplings to the b-quark, and with mass close to the mass of the Z boson. This scenario provides an excellent fit to forward-backward asymmetry of the b-quark measured on the Z-pole and \pm 2 GeV off the Z-pole, and to lepton asymmetry, A_e, obtained from the measurement of left-right asymmetry for hadronic final states, and thus it removes the tension in the determination of the weak mixing angle from these two measurements. It also leads to a significant improvement in the total hadronic cross section on the Z-pole and R_b measured at energies above the Z-pole. We explore in detail properties of the Z' needed to explain the data and present a model for Z' with required couplings. The model preserves standard model Yukawa couplings, it is anomaly free and can be embedded into grand unified theories. It allows a choice of parameters that does not generate any flavor violating couplings of the Z' to standard model fermions. Out of standard model couplings, it only negligibly modifies the left-handed bottom quark coupling to the Z boson and the 3rd column of the CKM matrix. Modifications of standard model couplings in the charged lepton sector are also negligible. It predicts an additional down type quark, D, with mass in a few hundred GeV range, and an extra lepton doublet, L, possibly much heavier than the D quark. We discuss signatures of the Z' at the Large Hadron Collider and calculate the Z'b production cross section which is the dominant production mechanism for the Z'.Comment: 26 pages, 18 figures, minor modifications, one fig. added, results unchange

    The Formation of Carbon Microcoils Having the Coil-Type Overall Geometry

    Get PDF
    Carbon microcoils could be synthesized using a thermal chemical vapor deposition process in which C2H2/H2 is used as the source gas and SF6 as an additive gas. We investigated the formation of carbon microcoils as a function of reaction time to study the growth mechanism of coil-type carbon microcoils, particularly under long reaction time. After the first 5 min of the reaction, wave-like carbon nanocoils were formed along with carbon microcoils at certain positions on the sample. An increase in reaction time (60 min) led to the formation of double helix-type carbon microcoils. Further increase in the reaction time (120 min) led to the formation of twist-type carbon microcoils with occasional growth of the coil-type carbon microcoils on the sample. However, at the longest reaction time (180 min) investigated in this work, we observed a decrease in the density of the carbon microcoils. Based on these results, we determine the optimal reaction time for the growth of double helix-type carbon microcoils and suggest the growth mechanism of the coil-type carbon microcoils with a focus on long reaction time

    Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

    Get PDF
    AbstractAustenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation

    A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography

    Get PDF
    Decoding neural signals into control outputs has been a key to the development of brain-computer interfaces (BCIs). While many studies have identified neural correlates of kinematics or applied advanced machine learning algorithms to improve decoding performance, relatively less attention has been paid to optimal design of decoding models. For generating continuous movements from neural activity, design of decoding models should address how to incorporate movement dynamics into models and how to select a model given specific BCI objectives. Considering nonlinear and independent speed characteristics, we propose a hybrid Kalman filter to decode the hand direction and speed independently. We also investigate changes in performance of different decoding models (the linear and Kalman filters) when they predict reaching movements only or predict both reach and rest. Our offline study on human magnetoencephalography (MEG) during point-to-point arm movements shows that the performance of the linear filter or the Kalman filter is affected by including resting states for training and predicting movements. However, the hybrid Kalman filter consistently outperforms others regardless of movement states. The results demonstrate that better design of decoding models is achieved by incorporating movement dynamics into modeling or selecting a model according to decoding objectives.open0

    Biomimetic Thermal-sensitive Multi-transform Actuator

    Get PDF
    Controllable and miniaturised mechanical actuation is one of the main challenges facing various emerging technologies, such as soft robotics, drug delivery systems, and microfluidics. Here we introduce a simple method for constructing actuating devices with programmable complex motions. Thermally responsive hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) and its functionalized derivatives (f-PNIPAM) were used to control the lower critical solution temperature (LCST) or the temperature at which the gel volume changes. Techniques for ultra-violet crosslinking the monomer solutions were developed to generate gel sheets with controllable crosslink density gradients that allowed bending actuation to specified curvatures by heating through the LCST. Simple molding processes were then used to construct multi-transform devices with complex shape changes, including a bioinspired artificial flower that shows blossoming and reverse blossoming with a change in temperature

    Mechanical Properties and Durability of Latex-Modified Fiber-Reinforced Concrete: A Tunnel Liner Application

    Get PDF
    This study assessed the mechanical properties and durability of latex-modified fiber-reinforced segment concrete (polyolefin-based macrosynthetic fibers and hybrid fiber-macrosynthetic fiber and polypropylene fiber) for a tunnel liner application. The tested macrosynthetic fiber-reinforced concrete has a better strength than steel fiber-reinforced concrete. The tested concrete with blast furnace slag has a higher chloride ion penetration resistance (less permeable), but its compressive and flexural strengths can be reduced with blast furnace slag content increase. Also, the hybrid fiber-reinforced concrete has higher compressive strength, flexural strength, chloride ion water permeability resistance, impact resistance, and abrasion resistance than the macrosynthetic fiber-reinforced concrete. The modified fiber improved the performance of concrete, and the hybrid fiber was found to control the formation of micro- and macrocracks more effectively. Therefore, overall performance of the hybrid fiber-reinforced concrete was found superior to the other fiber-reinforced concrete mixes tested for this study. The test results also indicated that macrosynthetic fiber could replace the steel fiber as a concrete reinforcement
    corecore