4,935 research outputs found

    On the origin of the hump structure in the in-plane optical conductivity of high Tc cuprates based on a SU(2) slave-boson theory

    Full text link
    An improved version of SU(2) slave-boson approach is applied to study the in-plane optical conductivity of the two dimensional systems of high Tc cuprates. We investigate the role of fluctuations of both the phase and amplitude of order parameters on the (Drude) peak-dip-hump structure in the in-plane conductivity as a function of hole doping concentration and temperature. The mid-infrared(MIR) hump in the in-plane optical conductivity is shown to originate from the antiferromagnetic spin fluctuations of short range(the amplitude fluctuations of spin singlet pairing order parameters), which is consistent with our previous U(1) study. However the inclusion of both the phase and amplitude fluctuations is shown to substantially improve the qualitative feature of the optical conductivity by showing substantially reduced Drude peak widths for entire doping range. Both the shift of the hump position to lower frequency and the growth of the hump peak height with increasing hole concentration is shown to be consistent with observations.Comment: 7 pages, 6 figure

    A Near-Infrared Study of the Highly-Obscured Active Star-Forming Region W51B

    Full text link
    We present wide-field JHKs-band photometric observations of the three compact HII regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact HII regions show the excess number of stars in the J-Ks histograms compared with reference fields. While the mean color excess ratio E(J-H)/E(H-Ks) of the three compact HII regions are similar to ~ 2.07, the visual extinctions toward them are somewhat different: ~ 17 mag for G48.9-0.3 and G49.0-0.3; ~ 23 mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact HII region is =< 2 Myr. The inferred total stellar mass, ~ 1.4 x 10^4 M_sun, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ~ 10 %.Comment: 12 pages, 10 eps figures, uses jkas.st

    Ab initio holography

    Get PDF
    We apply the quantum renormalization group to construct a holographic dual for the U(N) vector model for complex bosons defined on a lattice. The bulk geometry becomes dynamical as the hopping amplitudes which determine connectivity of space are promoted to quantum variables. In the large N limit, the full bulk equations of motion for the dynamical hopping fields are numerically solved for finite systems. From finite size scaling, we show that different phases exhibit distinct geometric features in the bulk. In the insulating phase, the space gets fragmented into isolated islands deep inside the bulk, exhibiting ultra-locality. In the superfluid phase, the bulk exhibits a horizon beyond which the geometry becomes non-local. Right at the horizon, the hopping fields decay with a universal power-law in coordinate distance between sites, while they decay in slower power-laws with continuously varying exponents inside the horizon. At the critical point, the bulk exhibits a local geometry whose characteristic length scale diverges asymptotically in the IR limit.Comment: 44+11 pages, many figures, added how to extract critical exponent from bulk (Fig. 13), other minor change
    • …
    corecore