5,815 research outputs found
Unintended complication of intracranial subdural hematoma after percutaneous epidural neuroplasty.
Percutaneous epidural neuroplasty (PEN) is a known interventional technique for the management of spinal pain. As with any procedures, PEN is associated with complications ranging from mild to more serious ones. We present a case of intracranial subdural hematoma after PEN requiring surgical evacuation. We review the relevant literature and discuss possible complications of PEN and patholophysiology of intracranial subdural hematoma after PEN
Online home appliance control using EEG-Based brain-computer interfaces
Brain???computer interfaces (BCIs) allow patients with paralysis to control external devices by mental commands. Recent advances in home automation and the Internet of things may extend the horizon of BCI applications into daily living environments at home. In this study, we developed an online BCI based on scalp electroencephalography (EEG) to control home appliances. The BCI users controlled TV channels, a digital door-lock system, and an electric light system in an unshielded environment. The BCI was designed to harness P300 andN200 components of event-related potentials (ERPs). On average, the BCI users could control TV channels with an accuracy of 83.0% ?? 17.9%, the digital door-lock with 78.7% ?? 16.2% accuracy, and the light with 80.0% ?? 15.6% accuracy, respectively. Our study demonstrates a feasibility to control multiple home appliances using EEG-based BCIs
On the origin of the hump structure in the in-plane optical conductivity of high Tc cuprates based on a SU(2) slave-boson theory
An improved version of SU(2) slave-boson approach is applied to study the
in-plane optical conductivity of the two dimensional systems of high Tc
cuprates. We investigate the role of fluctuations of both the phase and
amplitude of order parameters on the (Drude) peak-dip-hump structure in the
in-plane conductivity as a function of hole doping concentration and
temperature. The mid-infrared(MIR) hump in the in-plane optical conductivity is
shown to originate from the antiferromagnetic spin fluctuations of short
range(the amplitude fluctuations of spin singlet pairing order parameters),
which is consistent with our previous U(1) study. However the inclusion of both
the phase and amplitude fluctuations is shown to substantially improve the
qualitative feature of the optical conductivity by showing substantially
reduced Drude peak widths for entire doping range. Both the shift of the hump
position to lower frequency and the growth of the hump peak height with
increasing hole concentration is shown to be consistent with observations.Comment: 7 pages, 6 figure
A Review on the Computational Methods for Emotional State Estimation from the Human EEG
A growing number of affective computing researches recently developed a computer system that can recognize an emotional state of the human user to establish affective human-computer interactions. Various measures have been used to estimate emotional states, including self-report, startle response, behavioral response, autonomic measurement, and neurophysiologic measurement. Among them, inferring emotional states from electroencephalography (EEG) has received considerable attention as EEG could directly reflect emotional states with relatively low costs and simplicity. Yet, EEG-based emotional state estimation requires well-designed computational methods to extract information from complex and noisy multichannel EEG data. In this paper, we review the computational methods that have been developed to deduct EEG indices of emotion, to extract emotion-related features, or to classify EEG signals into one of many emotional states. We also propose using sequential Bayesian inference to estimate the continuous emotional state in real time. We present current challenges for building an EEG-based emotion recognition system and suggest some future directions.open
- …