370 research outputs found

    Crystal Structure of Dps-1, a Functionally Distinct Dps Protein from Deinococcus radiodurans

    Get PDF
    DNA protection during starvation (Dps) proteins play an important role in protecting cellular macromolecules from damage by reactive oxygen species (ROS). Unlike most orthologs that protect DNA by a combination of DNA binding and prevention of hydroxyl radical formation by ferroxidation and sequestration of iron, Dps-1 from the radiation-resistant Deinococcus radiodurans fails to protect DNA from hydroxyl radical-mediated cleavage through a mechanism inferred to involve continuous release of iron from the protein core. To address the structural basis for this unusual release of Fe2+, the crystal structure of D. radiodurans Dps-1 was determined to 2.0 Å resolution. Two of four strong anomalous signals per protein subunit correspond to metal-binding sites within an iron-uptake channel and a ferroxidase site, common features related to the canonical functions of Dps homologs. Similar to Lactobacillus lactis Dps, a metal-binding site is found at the N-terminal region. Unlike other metal sites, this site is located at the base of an N-terminal coil on the outer surface of the dodecameric protein sphere and does not involve symmetric association of protein subunits. Intriguingly, a unique channel-like structure is seen featuring a fourth metal coordination site that results from 3-fold symmetrical association of protein subunits through α2 helices. The presence of this metal-binding site suggests that it may define an iron-exit channel responsible for the continuous release of iron from the protein core. This interpretation is supported by substitution of residues involved in this ion coordination and the observation that the resultant mutant protein exhibits significantly attenuated iron release. Therefore, we propose that D. radiodurans Dps-1 has a distinct iron-exit channel. © 2006 Elsevier Ltd. All rights reserved

    Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: Transition state and the C-terminal function

    Get PDF
    The molecular basis of fructose-2,6-bisphosphatase (F-2,6-P 2ase) of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) was investigated using the crystal structures of the human inducible form (PFKFB3) in a phospho-enzyme intermediate state (PFKFB3-P•F-6-P), in a transition state-analogous complex (PFKFB3•AlF 4), and in a complex with pyrophosphate (PFKFB3•PP i) at resolutions of 2.45, 2.2, and 2.3 Å, respectively. Trapping the PFKFB3-P•F-6-P intermediate was achieved by flash cooling the crystal during the reaction, and the PFKFB3•AlF 4 and PFKFB3•PP i complexes were obtained by soaking. The PFKFB3•AlF 4 and PFKFB3•PP i complexes resulted in removing F-6-P from the catalytic pocket. With these structures, the structures of the Michaelis complex and the transition state were extrapolated. For both the PFKFB3-P formation and break down, the phosphoryl donor and the acceptor are located within ∼5.1 Å, and the pivotal point 2-P is on the same line, suggesting an in-line transfer with a direct inversion of phosphate configuration. The geometry suggests that NE2 of His253 undergoes a nucleophilic attack to form a covalent N-P bond, breaking the 2O-P bond in the substrate. The resulting high reactivity of the leaving group, 2O of F-6-P, is neutralized by a proton donated by Glu322. Negative charges on the equatorial oxygen of the transient bipyramidal phosphorane formed during the transfer are stabilized by Arg252, His387, and Asn259. The C-terminal domain (residues 440-446) was rearranged in PFKFB3•PP i, implying that this domain plays a critical role in binding of substrate to and release of product from the F-2,6-P 2ase catalytic pocket. These findings provide a new insight into the understanding of the phosphoryl transfer reaction. © 2011 Wiley Periodicals, Inc

    A Direct Substrate-Substrate Interaction Found in the Kinase Domain of the Bifunctional Enzyme, 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase

    Get PDF
    To understand the molecular basis of a phosphoryl transfer reaction catalyzed by the 6-phosphofructo-2-kinase domain of the hypoxia-inducible bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), the crystal structures of PFKFB3{radical dot}AMPPCP{radical dot}fructose-6-phosphate and PFKFB3{radical dot}ADP{radical dot}phosphoenolpyruvate complexes were determined to 2.7 Å and 2.25 Å resolution, respectively. Kinetic studies on the wild-type and site-directed mutant proteins were carried out to confirm the structural observations. The experimentally varied liganding states in the active pocket cause no significant conformational changes. In the pseudo-substrate complex, a strong direct interaction between AMPPCP and fructose-6-phosphate (Fru-6-P) is found. By virtue of this direct substrate-substrate interaction, Fru-6-P is aligned with AMPPCP in an orientation and proximity most suitable for a direct transfer of the γ-phosphate moiety to 2-OH of Fru-6-P. The three key atoms involved in the phosphoryl transfer, the β,γ-phosphate bridge oxygen atom, the γ-phosphorus atom, and the 2-OH group are positioned in a single line, suggesting a direct phosphoryl transfer without formation of a phosphoenzyme intermediate. In addition, the distance between 2-OH and γ-phosphorus allows the γ-phosphate oxygen atoms to serve as a general base catalyst to induce an associative phosphoryl transfer mechanism. The site-directed mutant study and inhibition kinetics suggest that this reaction will be catalyzed most efficiently by the protein when the substrates bind to the active pocket in an ordered manner in which ATP binds first. © 2007 Elsevier Ltd. All rights reserved

    Atomic layer coating of hafnium oxide on carbon nanotubes for high-performance field emitters

    Get PDF
    Carbon nanotubes coated with hafnium oxide exhibit excellent electron emission characteristics, including a low turn-on voltage, a high field enhancement factor, and exceptional current stability. Their enhanced emission performance was attributed to a decrease in the work function and an increase in the electron density of states at the carbon nanotube Fermi level closest to the conduction band minimum of hafnium oxide. In addition, the enhanced current stability was attributed to the ability of hafnium oxide to protect the carbon nanotubes against ions and free radicals created in the electron field emission process. (C) 2011 American Institute of Physics. [doi:10.1063/1.3650471]ArticleAPPLIED PHYSICS LETTERS. 99(15):153115 (2011)journal articl

    Crystal structure of the hypoxia-inducible form of 6-phosphofructo-2- kinase/fructose-2,6-bisphosphatase (PFKFB3): A possible new target for cancer therapy

    Get PDF
    The hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (PFKFB3) plays a crucial role in the progression of cancerous cells by enabling their glycolytic pathways even under severe hypoxic conditions. To understand its structural architecture and to provide a molecular scaffold for the design of new cancer therapeutics, the crystal structure of the human form was determined. The structure at 2.1 Å resolution shows that the overall folding and functional dimerization are very similar to those of the liver (PFKFB1) and testis (PFKFB4) forms, as expected from sequence homology. However, in this structure, the N-terminal regulatory domain is revealed for the first time among the PFKFB isoforms. With a β-hairpin structure, the N terminus interacts with the 2-Pase domain to secure binding of fructose-6-phosphate to the active pocket, slowing down the release of fructose-6-phosphate from the phosphoenzyme intermediate product complex. The C-terminal regulatory domain is mostly disordered, leaving the active pocket of the fructose-2,6-bisphosphatase domain wide open. The active pocket of the 6-phosphofructo-2-kinase domain has a more rigid conformation, allowing independent bindings of substrates, fructose-6-phosphate and ATP, with higher affinities than other isoforms. Intriguingly, the structure shows an EDTA molecule bound to the fructose-6-phosphate site of the 6-phosphofructo-2-kinase active pocket despite its unfavorable liganding concentration, suggesting a high affinity. EDTA is not removable from the site with fructose-6-P alone but is with both ATP and fructose-6-P or with fructose-2,6-bisphosphate. This finding suggests that a molecule in which EDTA is covalently linked to ADP is a good starting molecule for the development of new cancer-therapeutic molecules. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc

    Linear Fat Deposition in the Middle Layer of the Left Ventricular Myocardium: Computed Tomographic Findings

    Get PDF
    We report here a case of streaky fat deposition in the middle layer of the left ventricular myocardium, without any underlying etiology, and this was seen on computed tomography coronary angiography. This report suggests that left ventricular middle layer fat deposition should be investigated in order to determine its etiology, the pathogenesis and the prognosis
    • …
    corecore