11 research outputs found

    3D Cascaded U-Net with a Squeeze-and-Exicitation Block for Semantic Segmentation on Kidney and Renal Cell Carcinoma in Abdonimal Volumetric CT

    Get PDF
    Segmentation is a fundamental process in medical image analysis. Recently, convolutional neural networks (CNNs) has allowed for automatic segmentation; however, segmentaiton of complex organs and diseases including the kidney or renal cell carcinoma (RCC) remains a different task due to limited data and labor-intensive labeling work. The purpose of this study is to segment kideny and RCC in CT using cascaded 3D U-Net with a squeeze-and-excitation (SE) block using a cascaded method. 210 kidneys and their RCC in abdominal CT images were used as training and validation sets. The Dice similarity coefficients (DSCs) of kidney and RCC in test set were 0.963 and 0.734 respectively. The cascaded semantic segmentation can potentially reduce segmentation efforts and increase the efficiency in clinical workflow

    Radiation Engineering of Optical Antennas for Maximum Field Enhancement

    Get PDF
    Optical antennas have generated much interest in recent years due to their ability to focus optical energy beyond the diffraction limit, benefiting a broad range of applications such as sensitive photodetection, magnetic storage, and surfaceenhanced Raman spectroscopy. To achieve the maximum field enhancement for an optical antenna, parameters such as the antenna dimensions, loading conditions, and coupling efficiency have been previously studied. Here, we present a framework, based on coupled-mode theory, to achieve maximum field enhancement in optical antennas through optimization of optical antennas’ radiation characteristics. We demonstrate that the optimum condition is achieved when the radiation quality factor (Q_(rad)) of optical antennas is matched to their absorption quality factor (Q_(abs)). We achieve this condition experimentally by fabricating the optical antennas on a dielectric (SiO2) coated ground plane (metal substrate) and controlling the antenna radiation through optimizing the dielectric thickness. The dielectric thickness at which the matching condition occurs is approximately half of the quarter-wavelength thickness, typically used to achieve constructive interference, and leads to ∼20% higher field enhancement relative to a quarter-wavelength thick dielectric layer

    Highly Efficient and Tailorable On-Chip Metal–Insulator–Metal Plasmonic Nanofocusing Cavity

    No full text
    Simulation techniques were used to investigate the properties of a deep subwavelength-scale on-chip optical cavity composed of a highly efficient metal–insulator–metal 3D-tapered plasmonic nanofocusing waveguide and easily tailorable metal–insulator–metal plasmonic crystals. The configuration described here significantly enhanced the highly efficient field localization in the plasmonic nanofocusing waveguide at the center of the cavity due to the impedance tuning capabilities of the plasmonic crystals. The plasmonic crystals served as nanoscale input and output couplers with designable reflectivities and a clear band-stop regime around the telecommunication wavelength, λ<sub>0</sub> = 1.55 μm. Simulation studies indicated that this configuration could efficiently confine electromagnetic waves on the nanometer length scale through a field intensity enhancement of 7 × 10<sup>3</sup> and a Purcell enhancement of 8 × 10<sup>3</sup> within a volume of 1.4 × 10<sup>–5</sup> λ<sub>0</sub><sup>3</sup>. To evaluate the performance of the highly efficient metal–insulator–metal 3D-tapered plasmonic nanofocusing waveguide structure itself, the overall focusing efficiency, that is, the transmission rate from the wavelength-scale input side to the deep subwavelength-scale focusing core in the tapered waveguide, was calculated to be around 85%
    corecore