27 research outputs found

    밴쿠버 지구촌 교회의 가정 교회 사역과 교회 성장전략

    Get PDF
    1 full d’un mapa en fulls, còpies fotogràfiques, b/n. - La col·lecció de la Cartoteca de la Universitat de Girona consta de més de 2.000 fulls, amb i sense toponímia. - La data és la del vol. - La numeració segueix el gràfic de fulls amb la informació fila/columna.60 x 30 cm cada full1:5 00

    Reducing time to discovery : materials and molecular modeling, imaging, informatics, and integration

    Get PDF
    This work was supported by the KAIST-funded Global Singularity Research Program for 2019 and 2020. J.C.A. acknowledges support from the National Science Foundation under Grant TRIPODS + X:RES-1839234 and the Nano/Human Interfaces Presidential Initiative. S.V.K.’s effort was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division and was performed at the Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy, Office of Science User Facility.Multiscale and multimodal imaging of material structures and properties provides solid ground on which materials theory and design can flourish. Recently, KAIST announced 10 flagship research fields, which include KAIST Materials Revolution: Materials and Molecular Modeling, Imaging, Informatics and Integration (M3I3). The M3I3 initiative aims to reduce the time for the discovery, design and development of materials based on elucidating multiscale processing-structure-property relationship and materials hierarchy, which are to be quantified and understood through a combination of machine learning and scientific insights. In this review, we begin by introducing recent progress on related initiatives around the globe, such as the Materials Genome Initiative (U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.), Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a focus on the multiscale structural hierarchy, as well as structure-property relationships. Additionally, data mining from the literature combined with machine learning will be shown to be more efficient in finding the future direction of materials structures with improved properties than the classical approach. Examples of materials for applications in energy and information will be reviewed and discussed. A case study on the development of a Ni-Co-Mn cathode materials illustrates M3I3's approach to creating libraries of multiscale structure-property-processing relationships. We end with a future outlook toward recent developments in the field of M3I3.Peer reviewe

    A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick

    Get PDF
    BACKGROUND: Robot-assisted laparoscopic surgery offers several advantages compared with open surgery and conventional minimally invasive surgery. However, one issue that needs to be resolved is a collision between the robot arm and the assistant instrument. This is mostly caused by miscommunication between the surgeon and the assistant. To resolve this limitation, an assistant surgical robot system that can be simultaneously manipulated via a wireless controller is proposed to allow the surgeon to control the assistant instrument. METHODS: The system comprises two novel master interfaces (NMIs), a surgical instrument with a gripper actuated by a micromotor, and 6-axis robot arm. Two NMIs are attached to master tool manipulators of da Vinci research kit (dVRK) to control the proposed system simultaneously with patient side manipulators of dVRK. The developments of the surgical instrument and NMI are based on surgical-operation-by-wire concept and hands-on-throttle-and-stick concept from the earlier research, respectively. Tests for checking the accuracy, latency, and power consumption of the NMI are performed. The gripping force, reaction time, and durability are assessed to validate the surgical instrument. The workspace is calculated for estimating the clinical applicability. A simple peg task using the fundamentals of laparoscopic surgery board and an in vitro test are executed with three novice volunteers. RESULTS: The NMI was operated for 185 min and reflected the surgeon’s decision successfully with a mean latency of 132 ms. The gripping force of the surgical instrument was comparable to that of conventional systems and was consistent even after 1000 times of gripping motion. The reaction time was 0.4 s. The workspace was calculated to be 8397.4 cm(3). Recruited volunteers were able to execute the simple peg task within the cut-off time and successfully performed the in vitro test without any collision. CONCLUSIONS: Various experiments were conducted and it is verified that the proposed assistant surgical robot system enables collision-free and simultaneous operation of the dVRK’s robot arm and the proposed assistant robot arm. The workspace is appropriate for the performance of various kinds of surgeries. Therefore, the proposed system is expected to provide higher safety and effectiveness for the current surgical robot system

    Audiovisual Biofeedback-Based Trunk Stabilization Training Using a Pressure Biofeedback System in Stroke Patients: A Randomized, Single-Blinded Study

    No full text
    The purpose of this study was to assess the effects of audiovisual biofeedback-based trunk stabilization training using a pressure biofeedback system (PBS) in stroke patients. Forty-three chronic stroke patients, who had experienced a stroke more than 6 months ago and were able to sit and walk independently, participated in this study. The subjects were randomly allocated to an experimental group (n=21) or a control group (n=22). The experimental group participated in audiovisual biofeedback-based trunk stabilization training for 50 minutes/day, 5 days/week, for 6 weeks. The control group underwent trunk stabilization training without any biofeedback. The primary outcome of this study was the thickness of the trunk muscles. The secondary outcomes included static sitting balance ability and dynamic sitting balance ability. The thickness of the trunk muscles, static sitting balance ability, and dynamic sitting balance ability were significantly improved in the experimental group compared to the control group (p<0.05). The present study showed that trunk stabilization training using a PBS had a positive effect on the contracted ratio of trunk muscles and balance ability. By providing audiovisual feedback, the PBS enables accurate and effective training of the trunk muscles, and it is an effective method for trunk stabilization

    A Topology Control Scheme Using CDS in Wireless Sensor Networks

    No full text
    Topology control is one of the key issues in wireless networks. In this letter, we propose a simple topology control algorithm based on Connected Dominant Set (CDS) theory. The proposed algorithm uses less memory and less overhead cost than other existing schemes, and is therefore appropriate for implementation in wireless sensor networks. We will prove that the algorithm can form a CDS and guarantee network connectivity. The performance of our algorithm is demonstrated by simulation results

    Development of stereo endoscope system with its innovative master interface for continuous surgical operation

    Get PDF
    Abstract Background Although robotic laparoscopic surgery has various benefits when compared with conventional open surgery and minimally invasive surgery, it also has issues to overcome and one of the issues is the discontinuous surgical flow that occurs whenever control is swapped between the endoscope system and the operating robot arm system. This can lead to problems such as collision between surgical instruments, injury to patients, and increased operation time. To achieve continuous surgical operation, a wireless controllable stereo endoscope system is proposed which enables the simultaneous control of the operating robot arm system and the endoscope system. Methods The proposed system consists of two improved novel master interfaces (iNMIs), a four-degrees of freedom (4-DOFs) endoscope control system (ECS), and a simple three-dimensional (3D) endoscope. In order to simultaneously control the proposed system and patient side manipulators of da Vinci research kit (dVRK), the iNMIs are installed to the master tool manipulators of dVRK system. The 4-DOFs ECS consists of four servo motors and employs a two-parallel link structure to provide translational and fulcrum point motion to the simple 3D endoscope. The images acquired by the endoscope undergo stereo calibration and rectification to provide a clear 3D vision to the surgeon as available in clinically used da Vinci surgical robot systems. Tests designed to verify the accuracy, data transfer time, and power consumption of the iNMIs were performed. The workspace was calculated to estimate clinical applicability and a modified peg transfer task was conducted with three novice volunteers. Results The iNMIs operated for 317 min and moved in accordance with the surgeon’s desire with a mean latency of 5 ms. The workspace was calculated to be 20378.3 cm3, which exceeds the reference workspace of 549.5 cm3. The novice volunteers were able to successfully execute the modified peg transfer task designed to evaluate the proposed system’s overall performance. Conclusions The experimental results verify that the proposed 3D endoscope system enables continuous surgical flow. The workspace is suitable for the performance of numerous types of surgeries. Therefore, the proposed system is expected to provide much higher safety and efficacy for current surgical robot systems

    Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat

    Get PDF
    Abstract Background Gravity is omnipresent on Earth; however, humans in space, such as astronauts at the International Space Station, experience microgravity. Long-term exposure to microgravity is considered to elicit physiological changes, such as muscle atrophy, in the human body. In addition, certain types of cancer cells demonstrate inhibited proliferation under condition of time-averaged simulated microgravity (taSMG). However, the response of human Hodgkin’s lymphoma cancer cells to reduced gravity, and the associated physiological changes in these cells, have not been elucidated. Methods In this study, the proliferation of human Hodgkin’s lymphoma cancer cells (L-540 and HDLM-2) under taSMG condition (<10−3 G, 1 G is defined as 9.8 m/s2) was studied using a 3D clinostat. Normal human dermal fibroblast (HDF) was proliferated in the same condition as a control group. For the development of 3D clinostat, two motors were used to actuate the frames. Electrical wires for power supply and communication were connected via slip ring. For symmetrical path of gravitational vector, optimal angular velocities of the motors were found using simulation results. Under the condition of taSMG implemented by the 3D clinostat, proliferation of the cells was observed for 3 days. Results The results indicated that proliferation of these cancer cells was significantly (p < 0.0005) inhibited under taSMG, whereas proliferation of normal HDF cells was not affected. Conclusions Findings in this study could be significantly valuable in developing novel strategies for selective killing of cancer cells such as lymphoma

    Investigation of the Probe-Factor Deconvolution Methods for Dynamic ESD Fields Measurements

    No full text
    Accurate measurements of electromagnetic fields are essential to analyze the radiated noise due to unwanted electrostatic discharge (ESD) events at electronic devices. Usually, to know the radiated noise by ESD events, the voltages induced at field probes are measured, and the fields are obtained from the voltage by de-convolving the probe factor. In this paper, the two probe-factor deconvolution methods are investigated and compared in the measurements of the fields induced by system-level ESD events
    corecore