188,155 research outputs found

    Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge

    Full text link
    We systematically embed the SU(2)×\timesU(1) Higgs model in the unitary gauge into a fully gauge-invariant theory by following the generalized BFT formalism. We also suggest a novel path to get a first-class Lagrangian directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure

    D-outcome measurement for a nonlocality test

    Full text link
    For the purpose of the nonlocality test, we propose a general correlation observable of two parties by utilizing local dd-outcome measurements with SU(dd) transformations and classical communications. Generic symmetries of the SU(dd) transformations and correlation observables are found for the test of nonlocality. It is shown that these symmetries dramatically reduce the number of numerical variables, which is important for numerical analysis of nonlocality. A linear combination of the correlation observables, which is reduced to the Clauser-Horne-Shimony-Holt (CHSH) Bell's inequality for two outcome measurements, is led to the Collins-Gisin-Linden-Massar-Popescu (CGLMP) nonlocality test for dd-outcome measurement. As a system to be tested for its nonlocality, we investigate a continuous-variable (CV) entangled state with dd measurement outcomes. It allows the comparison of nonlocality based on different numbers of measurement outcomes on one physical system. In our example of the CV state, we find that a pure entangled state of any degree violates Bell's inequality for d(≄2)d(\ge 2) measurement outcomes when the observables are of SU(dd) transformations.Comment: 16 pages, 2 figure

    Geometry and seismic properties of the subducting Cocos plate in central Mexico

    Get PDF
    The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15° for 80 km from Acapulco and then horizontally underplates the continental crust for approximately 200 km to the Trans-Mexican Volcanic Belt (TMVB). The crustal image also shows that there is no continental root associated with the TMVB. The migrated image of the RFs shows that the slab is steeply dipping into the mantle at about 75° beneath the TMVB. Both the continental and oceanic Moho are clearly seen in both images, and modeling of the RF conversion amplitudes and timings of the underplated features reveals a thin low-velocity zone between the plate and the continental crust that appears to absorb nearly all of the strain between the upper plate and the slab. By inverting RF amplitudes of the converted phases and their time separations, we produce detailed maps of the seismic properties of the upper and lower oceanic crust of the subducting Cocos plate and its thickness. High Poisson's and Vp/Vs ratios due to anomalously low S wave velocity at the upper oceanic crust in the flat slab region may indicate the presence of water and hydrous minerals or high pore pressure. The evidence of high water content within the oceanic crust explains the flat subduction geometry without strong coupling of two plates. This may also explain the nonvolcanic tremor activity and slow slip events occurring in the subducting plate and the overlying crust

    Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    Get PDF
    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels

    Exact solutions of charged wormhole

    Get PDF
    In this paper, the backreaction to the traversable Lorentzian wormhole spacetime by the scalar field or electric charge is considered to find the exact solutions. The charges play the role of the additional matter to the static wormhole which is already constructed by the exotic matter. The stability conditions for the wormhole with scalar field and electric charge are found from the positiveness and flareness for the wormhole shape function.Comment: 9 pages, Revtex, no figures, to appear in Phys. Rev. D(2001

    Condensation and Clustering in the Driven Pair Exclusion Process

    Full text link
    We investigate particle condensation in a driven pair exclusion process on one- and two- dimensional lattices under the periodic boundary condition. The model describes a biased hopping of particles subject to a pair exclusion constraint that each particle cannot stay at a same site with its pre-assigned partner. The pair exclusion causes a mesoscopic condensation characterized by the scaling of the condensate size mcon∌NÎČm_{\rm con}\sim N^\beta and the number of condensates Ncon∌NαN_{\rm con}\sim N^\alpha with the total number of sites NN. Those condensates are distributed randomly without hopping bias. We find that the hopping bias generates a spatial correlation among condensates so that a cluster of condensates appears. Especially, the cluster has an anisotropic shape in the two-dimensional system. The mesoscopic condensation and the clustering are studied by means of numerical simulations.Comment: 4 pages, 5 figure
    • 

    corecore