15 research outputs found

    An Electrophilic Deguelin Analogue Inhibits STAT3 Signaling in H-Ras-Transformed Human Mammary Epithelial Cells: The Cysteine 259 Residue as a Potential Target

    Get PDF
    Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signals that are often constitutively activated in many cancerous or transformed cells and some stromal cells in the tumor microenvironment. Persistent STAT3 activation in malignant cells stimulates proliferation, survival, angiogenesis, invasion, and tumor-promoting inflammation. STAT3 undergoes activation through phosphorylation on tyrosine 705, which facilitates its dimerization. Dimeric STAT3 translocates to the nucleus, where it regulates the transcription of genes involved in cell proliferation, survival, etc. In the present study, a synthetic deguelin analogue SH48, discovered by virtual screening, inhibited the phosphorylation, nuclear translocation, and transcriptional activity of STAT3 in H-ras transformed human mammary epithelial MCF-10A cells (MCF10A-ras). We speculated that SH48 bearing an alpha,beta-unsaturated carbonyl group could interact with a thiol residue of STAT3, thereby inactivating this transcription factor. Non-electrophilic analogues of SH48 failed to inhibit STAT3 activation, lending support to the above supposition. By utilizing a biotinylated SH48, we were able to demonstrate the complex formation between SH48 and STAT3. SH48 treatment to MCF10A-ras cells induced autophagy, which was verified by staining with a fluorescent acidotropic probe, LysoTracker Red, as well as upregulating the expression of LC3II and p62. In conclusion, the electrophilic analogue of deguelin interacts with STAT3 and inhibits its activation in MCF10A-ras cells, which may account for its induction of autophagic death.

    Topically Applied Taurine Chloramine Protects against UVB-Induced Oxidative Stress and Inflammation in Mouse Skin

    No full text
    Excessive exposure to solar light, especially its UV component, is a principal cause of photoaging, dermatitis, and photocarcinogenesis. In searching for candidate substances that can effectively protect the skin from photodamage, the present study was conducted with taurine chloramine (TauCl), formed from taurine in phagocytes recruited to inflamed tissue. Irradiation with ultraviolet B (UVB) of 180 mJ/cm(2) intensity caused oxidative damage and apoptotic cell death in the murine epidermis. These events were blunted by topically applied TauCl, as evidenced by the lower level of 4-hydroxynonenal-modified protein, reduced proportions of TUNEL-positive epidermal cells, and suppression of caspase-3 cleavage. In addition, the expression of two prototypic inflammatory enzymes, cyclooxygenase-2 and inducible nitric oxide synthase, and transcription of some pro-inflammatory cytokines (Tnf, Il6, Il1b, Il10) were significantly lower in TauCl-treated mice than vehicle-treated control mice. The anti-inflammatory effect of TauCl was associated with inhibition of STAT3 activation and induction of antioxidant enzymes, such as heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1, through activation of nuclear factor erythroid 2-related factor 2.

    Protective effects of taurine chloramine on experimentally induced colitis: Nfฮบb, stat3, and nrf2 as potential targets

    No full text
    Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing beta-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-alpha, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NF kappa B and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NF kappa B and STAT3.

    Taurine chloramine potentiates phagocytic activity of peritoneal macrophages through up-regulation of dectin-1 mediated by heme oxygenase-1-derived carbon monoxide

    No full text
    Resolution of inflammation that occurs after microbial infection or tissue damage is an important physiologic process in maintaining or restoring host homeostasis. Taurine chloramine (TauCl) is formed by a reaction between taurine and hypochlorite in leukocytes, and it is especially abundant in activated neutrophils that encounter an oxidative burst. As neutrophils undergo apoptosis, TauCl is released to the extracellular matrix at the inflamed sites, thereby affecting coexisting macrophages in the inflammatory microenvironment. In this study, we investigated the role of TauCl in phagocytosis by macrophages during resolution of fungal infection-induced inflammation. We found that exogenous TauCl substantially increased the phagocytic efficiency of macrophages through up-regulation of dectin-1, a receptor for fungal beta-1,3-glucans, which is present on the membrane of macrophages. Our previous studies demonstrated the induction of heme oxygenase-1 (HO-1) expression in murine peritoneal macrophages treated with TauCl. In the present study, knocking out HO-1 or pharmacologic inhibition of HO-1 with zinc protoporphyrin IX attenuated the TauCl-induced expression of dectin-1 and subsequent phagocytosis. Furthermore, carbon monoxide (CO), a by-product of the HO-1-catalyzed reaction, induced expression of dectin-1 and potentiated phagocytic capability of the macrophages, which appeared to be mediated through up-regulation of peroxisome proliferator-activated receptor . Taken together, induction of HO-1 expression and subsequent CO production by TauCl are essential for phagocytosis of fungi by macrophages. Our results suggest that TauCl has important roles in host defense against fungal infection and has therapeutic potential in the management of inflammatory diseases

    Antitumor Activity of Novel Signal Transducer and Activator of Transcription 3 Inhibitors on Retinoblastoma

    No full text
    Signal transducer and activator of transcription 3 (STAT3) is a plausible therapeutic target in the treatment of retinoblastoma, the most common intraocular malignant tumor in children. STAT3, a transcription factor of several genes related to tumorigenesis, is activated in retinoblastoma tumors as well as other cancers. In this study, we investigated the structure-activity relationship of a library of STAT3 inhibitors, including a novel series of derivatives of the previously reported compound with a Michael acceptor (compound 1). We chose two novel STAT3 inhibitors, compounds 11 and 15, from the library based on their inhibitory effects on the phosphorylation and transcription activity of STAT3. These STAT3 inhibitors effectively suppressed the phosphorylation of STAT3 and inhibited the expression of STAT3-related genes CCND1, CDKN1A, BCL2, BCL2L1, BIRC5, MYC, MMP1, MMP9, and VEGFA. Intraocularly administered STAT3 inhibitors decreased the degree of tumor formation in the vitreous cavity of BALB/c nude mice of an orthotopic transplantation model. It is noteworthy that compounds 11 and 15 did not induce in vitro and in vivo toxicity on retinal constituent cells and retinal tissues, respectively, despite their potent antitumor effects. We suggest that these novel STAT3 inhibitors be used in the treatment of retinoblastoma. SIGNIFICANCE STATEMENT The current study suggests the novel STAT3 inhibitors with Michael acceptors possess antitumor activity on retinoblastoma, the most common intraocular cancer in children. Based on detailed structure-activity relationship studies, we found a 4-fluoro and 3-trifluoro analog (compound 11) and a monochloro analog (compound 15) of the parental compound (compound 1) inhibited STAT3 phosphorylation, leading to suppressed retinoblastoma in vitro and in vivo.Y

    Diastereoselective Total Synthesis of (โˆ’)-Galiellalactone

    No full text
    An enantioselective total synthesis of (โˆ’)-galiellalactone has been accomplished. The key features of the synthesis involve the highly stereoselective construction of the <i>cis</i>-trisubstituted cyclopentane intermediate by a Pd(0)-catalyzed cyclization, the stereospecific introduction of an angular hydroxyl group by Riley oxidation, and the efficient construction of the tricyclic system of (โˆ’)-galiellalactone via a combination of diastereoselective Hosomiโ€“Sakurai crotylation and ring-closing metathesis (RCM

    Identification and Structural Analysis of New Nrf2 Activators by Mechanism-Based Chemical Transformation of 15-Deoxy-(12,14)-PGJ(2)

    No full text
    Mechanism-based chemical transformation of 15-deoxy-(12,14)-PGJ(2) (15d-PGJ(2)) resulted in a series of new NF-E2-related factor-2 (Nrf2) activators and detailed elucidation of the function of each electrophilic binding site. In addition, HO-1 expression resulting from Nrf2 activation through enhanced dissociation of the Keap1-Nrf2 complex by the new activators was proved

    Role of heme oxygenase-1 in potentiation of phagocytic activity of macrophages by taurine chloramine: Implications for the resolution of zymosan A-induced murine peritonitis

    No full text
    Phagocytosis of pathogens by macrophages is crucial for the successful resolution of inflammation induced by microbial infection. Taurine chloramine (TauCl), an endogenous anti-inflammatory and antioxidative substance, is produced by reaction between taurine and hypochlorous acid by myeloperoxidase activity in neutrophils under inflammatory conditions. In the present study, we investigated the effect of TauCl on resolution of acute inflammation caused by fungal infection using a zymosan A-induced murine peritonitis model. TauCl administration reduced the number of the total peritoneal leukocytes, while it increased the number of peritoneal monocytes. Furthermore, TauCl promoted clearance of pathogens remaining in the inflammatory environment by macrophages. When the macrophages isolated from thioglycollate-treated mice were treated with TauCl, their phagocytic capability was enhanced. In the murine macrophage-like RAW264.7 cells treated with TauCl, the proportion of macrophages clearing the zymosan A particles was also increased. TauCl administration resulted in elevated expression of heme oxygenase-1 (HO-1) in the peritoneal macrophages. Pharmacologic inhibition of HO-1 activity or knockdown of HO-1 in the murine macrophage RAW264.7 cells abolished the TauCl-induced phagocytosis, whereas the overexpression of HO-1 augmented the phagocytic ability of macrophages. Moreover, peritoneal macrophages isolated from HO-1 null mice failed to mediate TauCl-induced phagocytosis. Our results suggest that TauCl potentiates phagocytic activity of macrophages through upregulation of HO-1 expression

    Identification of small molecule inhibitors of the STAT3 signaling pathway: Insights into their structural features and mode of action

    No full text
    A series of novel STAT3 inhibitors consisting of Michael acceptor has been identified through assays of the focused in-house library. In addition, their mode of action and structural feature responsible for the STAT3 inhibition were investigated. In particular, analog 6 revealed promising STAT3 inhibitory activity in HeLa cell lines. The analog also exhibited selective inhibition of STAT3 phosphorylation without affecting STAT1 phosphorylation and cytostatic effect in human breast epithelial cells (MCF10A-ras), which supports cancer cell-specific inhibitory properties. (C) 2015 Elsevier Ltd. All rights reserved

    15-Deoxy-Delta(12,14)-prostaglandin J(2) binds and inactivates STAT3 via covalent modification of cysteine 259 in H-Ras-transformed human breast epithelial cells

    No full text
    Signal transducer and activator of transcription 3 (STAT3) has been considered as a potential target for development of anticancer therapeutics. Here, we report a novel mechanism by which the cyclopentenone prostaglandin, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) functions as an allosteric inhibitor of STAT3. 15d-PGJ(2) inhibits phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3 in H-Ras-transformed human mammary epithelial cells (MCF10A-Ras) through the Michael addition reaction at cysteine 259 of STAT3. Comparative studies with 15d-PGJ(2) analogues reveal that both C12-C13 and C9-C10 double bonds conjugated to the carbonyl group in the cyclopentenone ring of 15d-PGJ(2) are essential for STAT3 binding. Antiproliferative and pro-apoptotic activities of 15d-PGJ(2) in MCF10A-Ras cells are attributable to covalent modification of STAT3 on Cys259, and mimic the effects induced by mutation of this amino acid.
    corecore