13 research outputs found

    Effect of sintering temperature under high pressure in the uperconductivity for MgB2

    Full text link
    We report the effect of the sintering temperature on the superconductivity of MgB2 pellets prepared under a high pressure of 3 GPa. The superconducting properties of the non-heated MgB2 in this high pressure were poor. However, as the sintering temperature increased, the superconducting properties were vastly enhanced, which was shown by the narrow transition width for the resistivity and the low-field magnetizations. This shows that heat treatment under high pressure is essential to improve superconducting properties. These changes were found to be closely related to changes in the surface morphology observed using scanning electron microscopy.Comment: 3 Pages including 3 figure

    Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    Full text link
    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.Comment: 5 pages, 3 figures. submitted to Phys. Rev.

    High current-carrying capability in c-axis-oriented superconducting MgB2 thin films

    Full text link
    In high-quality c-axis-oriented MgB2 thin films, we observed high critical current densities (Jc) of 16 MA/cm^2 at 15 K under self fields comparable to those of cuprate high-temperature superconductors. The extrapolated value of Jc at 5 K was estimated to be 40 MA/cm^2. For a magnetic field of 5 T, a Jc of 0.1 MA/cm^2 was detected at 15 K, suggesting that this compound would be a very promising candidate for practical applications at high temperature and lower power consumption. The vortex-glass phase is considered to be a possible explanation for the observed high current-carrying capability.Comment: 3 pages and 4 figures, to be published in Physical Review Letter

    Prominent bulk pinning effect in the MgB_2 superconductor

    Full text link
    We report the magnetic-field dependence of the irreversible magnetization of the recently discovered binary superconductor MgB2_{2}. For the temperature region of T<0.9TcT< 0.9T_c, the contribution of the bulk pinning to the magnetization overwhelms that of the surface pinning. This was evident from the fact that the magnetization curves, M(H)M(H), were well described by the critical-state model without considering the surface pinning effect. It was also found that the M(H)M(H) curves at various temperatures scaled when the field and the magnetization were normalized by the characteristic scaling factors H∗(T)H^\ast(T) and M∗(T)M^\ast(T), respectively. This feature suggests that the pinning mechanism determining the hysteresis in M(H)M(H) is unique below T=TcT=T_c.Comment: 4pages and 4 figures. Phys. Rev. B (accepted

    Universal scaling of the Hall resistivity in MgB2 superconductors

    Full text link
    The mixed-state Hall resistivity and the longitudinal resistivity in superconducting MgB2 thin films have been investigated as a function of the magnetic field over a wide range of current densities from 100 to 10000 A/cm^2. We observe a universal Hall scaling behavior with a constant exponent of 2.0, which is independent of the magnetic field, the temperature, and the current density. This result can be interpreted well within the context of recent theories.Comment: 4 page

    Critical flux pinning and enhanced upper-critical-field in magnesium diboride films

    Full text link
    We have conducted pulsed transport measurements on c-axis oriented magnesium diboride films over the entire relevant ranges of magnetic field 0 \alt H \alt H_{c2} (where \hcu is the upper critical field) and current density 0 \alt j \alt j_{d} (where jdj_{d} is the depairing current density). The intrinsic disorder of the films combined with the large coherence length and three-dimensionality, compared to cuprate superconductors, results in a six-fold enhancement of Hc2H_{c2} and raises the depinning current density jcj_{c} to within an order of magnitude of jdj_{d}. The current-voltage response is highly non-linear at all fields, resulting from a combination of depinning and pair-breaking, and has no trace of an Ohmic free-flux-flow regime. Keywords: pair, breaking, depairing, superconductor, superconductivity, flux, fluxon, vortex, mgb
    corecore