86 research outputs found

    Object-Aware Impedance Control for Human-Robot Collaborative Task with Online Object Parameter Estimation

    Full text link
    Physical human-robot interactions (pHRIs) can improve robot autonomy and reduce physical demands on humans. In this paper, we consider a collaborative task with a considerably long object and no prior knowledge of the object's parameters. An integrated control framework with an online object parameter estimator and a Cartesian object-aware impedance controller is proposed to realize complicated scenarios. During the transportation task, the object parameters are estimated online while a robot and human lift an object. The perturbation motion is incorporated into the null space of the desired trajectory to enhance the estimator accuracy. An object-aware impedance controller is designed using the real-time estimation results to effectively transmit the intended human motion to the robot through the object. Experimental demonstrations of collaborative tasks, including object transportation and assembly tasks, are implemented to show the effectiveness of our proposed method.Comment: 11 pages, 5 figures, for associated video, see https://youtu.be/bGH6GAFlRgA?si=wXj_SRzEE8BYoV2

    Module for Oxygenating Water without Generating Bubbles

    Get PDF
    A module that dissolves oxygen in water at concentrations approaching saturation, without generating bubbles of oxygen gas, has been developed as a prototype of improved oxygenators for water-disinfection and water-purification systems that utilize photocatalyzed redox reactions. Depending on the specific nature of a water-treatment system, it is desirable to prevent the formation of bubbles for one or more reasons: (1) Bubbles can remove some organic contaminants from the liquid phase to the gas phase, thereby introducing a gas-treatment problem that complicates the overall water-treatment problem; and/or (2) in some systems (e.g., those that must function in microgravity or in any orientation in normal Earth gravity), bubbles can interfere with the flow of the liquid phase. The present oxygenation module (see Figure 1) is a modified version of a commercial module that contains >100 hollow polypropylene fibers with a nominal pore size of 0.05 m and a total surface area of 0.5 m2. The module was originally designed for oxygenation in a bioreactor, with no water flowing around or inside the tubes. The modification, made to enable the use of the module to oxygenate flowing water, consisted mainly in the encapsulation of the fibers in a tube of Tygon polyvinyl chloride (PVC) with an inside diameter of 1 in. (approx.=25 mm). In operation, water is pumped along the insides of the hollow fibers and oxygen gas is supplied to the space outside the hollow tubes inside the PVC tube. In tests, the pressure drops of water and oxygen in the module were found to be close to zero at water-flow rates ranging up to 320 mL/min and oxygen-flow rates up to 27 mL/min. Under all test conditions, no bubbles were observed at the water outlet. In some tests, flow rates were chosen to obtain dissolved-oxygen concentrations between 25 and 31 parts per million (ppm) . approaching the saturation level of approx.=35 ppm at a temperature of 20 C and pressure of 1 atm (approx.=0.1 MPa). As one would expect, it was observed that the time needed to bring a flow of water from an initial low dissolved-oxygen concentration (e.g., 5 ppm) to a steady high dissolved-oxygen concentration at or near the saturation level depends on the rates of flow of both oxygen and water, among other things. Figure 2 shows the results of an experiment in which a greater flow of oxygen was used during the first few tens of minutes to bring the concentration up to approx.=25 ppm, then a lesser flow was used to maintain the concentration

    Differentially Private Sharpness-Aware Training

    Full text link
    Training deep learning models with differential privacy (DP) results in a degradation of performance. The training dynamics of models with DP show a significant difference from standard training, whereas understanding the geometric properties of private learning remains largely unexplored. In this paper, we investigate sharpness, a key factor in achieving better generalization, in private learning. We show that flat minima can help reduce the negative effects of per-example gradient clipping and the addition of Gaussian noise. We then verify the effectiveness of Sharpness-Aware Minimization (SAM) for seeking flat minima in private learning. However, we also discover that SAM is detrimental to the privacy budget and computational time due to its two-step optimization. Thus, we propose a new sharpness-aware training method that mitigates the privacy-optimization trade-off. Our experimental results demonstrate that the proposed method improves the performance of deep learning models with DP from both scratch and fine-tuning. Code is available at https://github.com/jinseongP/DPSAT.Comment: ICML 202

    Electrochemical Disposal of Hydrazines in Water

    Get PDF
    An electrochemical method of disposal of hydrazines dissolved in water has been devised. The method is applicable to hydrazine (N2H4), to monomethyl hydrazine [also denoted by MMH or by its chemical formula, (CH3)HNNH2], and to unsymmetrical dimethyl hydrazine [also denoted UDMH or by its chemical formula, (CH3)2NNH2]. The method involves a room-temperature process that converts the hydrazine to the harmless products N2, H2O, and, in some cases, CO

    Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions

    Get PDF
    The gut microbiota has an important role in the gut barrier, inflammation and metabolic functions. Studies have identified a close association between the intestinal barrier and metabolic diseases, including obesity and type 2 diabetes (T2D). Recently, Akkermansia muciniphila has been reported as a beneficial bacterium that reduces gut barrier disruption and insulin resistance. Here we evaluated the role of A. muciniphila-derived extracellular vesicles (AmEVs) in the regulation of gut permeability. We found that there are more AmEVs in the fecal samples of healthy controls compared with those of patients with T2D. In addition, AmEV administration enhanced tight junction function, reduced body weight gain and improved glucose tolerance in high-fat diet (HFD)-induced diabetic mice. To test the direct effect of AmEVs on human epithelial cells, cultured Caco-2 cells were treated with these vesicles. AmEVs decreased the gut permeability of lipopolysaccharide-treated Caco-2 cells, whereas Escherichia coli-derived EVs had no significant effect. Interestingly, the expression of occludin was increased by AmEV treatment. Overall, these results imply that AmEVs may act as a functional moiety for controlling gut permeability and that the regulation of intestinal barrier integrity can improve metabolic functions in HFD-fed mice.11Ysciescopuskc

    Quantitative local probing of polarization with application on HfO 2 ‐based thin films

    Get PDF
    Owing to their switchable spontaneous polarization, ferroelectric materials have been applied in various fields, such as information technologies, actuators, and sensors. In the last decade, as the characteristic sizes of both devices and materials have decreased significantly below the nanoscale, the development of appropriate characterization tools became essential. Recently, a technique based on conductive atomic force microscopy (AFM), called AFM‐positive‐up‐negative‐down (PUND), is employed for the direct measurement of ferroelectric polarization under the AFM tip. However, the main limitation of AFM‐PUND is the low frequency (i.e., on the order of a few hertz) that is used to initiate ferroelectric hysteresis. A significantly higher frequency is required to increase the signal‐to‐noise ratio and the measurement efficiency. In this study, a novel method based on high‐frequency AFM‐PUND using continuous waveform and simultaneous signal acquisition of the switching current is presented, in which polarization–voltage hysteresis loops are obtained on a high‐polarization BiFeO3 nanocapacitor at frequencies up to 100 kHz. The proposed method is comprehensively evaluated by measuring nanoscale polarization values of the emerging ferroelectric Hf0.5Zr0.5O2 under the AFM tip

    Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature

    Get PDF
    A quantitative single-molecule tip-enhanced Raman spectroscopy (TERS) study at room temperature remained a challenge due to the rapid structural dynamics of molecules exposed to air. Here, we demonstrate the hyperspectral TERS imaging of single or a few brilliant cresyl blue (BCB) molecules at room temperature, along with quantitative spectral analyses. Robust chemical imaging is enabled by the freeze-frame approach using a thin Al2O3 capping layer, which suppresses spectral diffusions and inhibits chemical reactions and contamination in air. For the molecules resolved spatially in the TERS image, a clear Raman peak variation up to 7.5 cm(-1) is observed, which cannot be found in molecular ensembles. From density functional theory-based quantitative analyses of the varied TERS peaks, we reveal the conformational heterogeneity at the single-molecule level. This work provides a facile way to investigate the single-molecule properties in interacting media, expanding the scope of single-molecule vibrational spectroscopy studies. Tip-enhanced vibrational spectroscopy at room temperature is complicated by molecular conformational dynamics, photobleaching, contaminations, and chemical reactions in air. This study demonstrates that a sub-nm protective layer of Al2O3 provides robust conditions for probing single-molecule conformations
    corecore