7,991 research outputs found

    Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats

    Get PDF
    This study examined the influence of the N-methyl-D-aspartate receptor (NMDAR) on the modulation of related spinal signaling after electroacupuncture (EA) treatment in normal rats. Bilateral 2 Hz EA stimulations (1-2-3.0 mA) were delivered at acupoints corresponding to Zusanli (ST36) and Sanyinjiao (SP6) in men for 30 min. Thermal sensitization was strongly inhibited by EA, but this analgesia was reduced by preintrathecal injection of the NMDAR antagonist, MK801. Phosphorylation of the NMDAR NR2B subunit, cAMP response element-binding protein (CREB), and especially phosphatidylinositol 3-kinase (PI3K) were significantly induced by EA. However, these marked phosphorylations were not observed in MK801-pretreated rats. EA analgesia was reduced by preintrathecal injection with the calcium chelators Quin2 and TMB8, similar to the results evident using MK801. Phosphorylation of PI3K and CREB induced by EA was also inhibited by TMB8. Calcium influx by NMDAR activation may play an important role in EA analgesia of normal rats through the modulation of the phosphorylation of spinal PI3K and CREB

    Brain-Driven Representation Learning Based on Diffusion Model

    Full text link
    Interpreting EEG signals linked to spoken language presents a complex challenge, given the data's intricate temporal and spatial attributes, as well as the various noise factors. Denoising diffusion probabilistic models (DDPMs), which have recently gained prominence in diverse areas for their capabilities in representation learning, are explored in our research as a means to address this issue. Using DDPMs in conjunction with a conditional autoencoder, our new approach considerably outperforms traditional machine learning algorithms and established baseline models in accuracy. Our results highlight the potential of DDPMs as a sophisticated computational method for the analysis of speech-related EEG signals. This could lead to significant advances in brain-computer interfaces tailored for spoken communication

    Matrix Metalloproteinase-3 Causes Dopaminergic Neuronal Death through Nox1-Regenerated Oxidative Stress

    Get PDF
    In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach

    Matrix Metalloproteinase-3 Causes Dopaminergic Neuronal Death through Nox1-Regenerated Oxidative Stress

    Get PDF
    In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach

    Heterogeneous nuclear ribonucleoprotein (hnRNP) L promotes DNA damage-induced cell apoptosis by enhancing the translation of p53

    Get PDF
    The tumor suppressor p53 is an essential gene in the induction of cell cycle arrest, DNA repair, and apoptosis. p53 protein is induced under cellular stress, blocking cell cycle progression and inducing DNA repair. Under DNA damage conditions, it has been reported that post-transcriptional regulation of p53 mRNA contributes to the increase in p53 protein level. Here we demonstrate that heterogeneous nuclear ribonucleoprotein (hnRNP) L enhances p53 mRNA translation. We found that hnRNP L is increased and binds to the 5' UTR of p53 mRNA in response to DNA damage. Increased hnRNP L caused enhancement of p53 mRNA translation. Conversely, p53 protein levels were decreased following hnRNP L knock-down, rendering them resistant to apoptosis and arrest in the G2/M phase after DNA damage. Thus, our findings suggest that hnRNP L functions as a positive regulator of p53 translation and promotes cell cycle arrest and apoptosis.11Ysciescopu

    Evidence-based hyponatremia management in liver disease

    Get PDF
    Hyponatremia is primarily a water balance disorder associated with high morbidity and mortality. The pathophysiological mechanisms behind hyponatremia are multifactorial, and diagnosing and treating this disorder remains challenging. In this review, the classification, pathogenesis, and step-by-step management approaches for hyponatremia in patients with liver disease are described based on recent evidence. We summarize the five sequential steps of the traditional diagnostic approach: 1) confirm true hypotonic hyponatremia, 2) assess the severity of hyponatremia symptoms, 3) measure urine osmolality, 4) classify hyponatremia based on the urine sodium concentration and extracellular fluid status, and 5) rule out any coexisting endocrine disorder and renal failure. Distinct treatment strategies for hyponatremia in liver disease should be applied according to the symptoms, duration, and etiology of disease. Symptomatic hyponatremia requires immediate correction with 3% saline. Asymptomatic chronic hyponatremia in liver disease is prevalent and treatment plans should be individualized based on diagnosis. Treatment options for correcting hyponatremia in advanced liver disease may include water restriction; hypokalemia correction; and administration of vasopressin antagonists, albumin, and 3% saline. Safety concerns for patients with liver disease include a higher risk of osmotic demyelination syndrome
    corecore