209 research outputs found

    BIRP: Bitcoin Information Retrieval Prediction Model Based on Multimodal Pattern Matching

    Full text link
    Financial time series have historically been assumed to be a martingale process under the Random Walk hypothesis. Instead of making investment decisions using the raw prices alone, various multimodal pattern matching algorithms have been developed to help detect subtly hidden repeatable patterns within the financial market. Many of the chart-based pattern matching tools only retrieve similar past chart (PC) patterns given the current chart (CC) pattern, and leaves the entire interpretive and predictive analysis, thus ultimately the final investment decision, to the investors. In this paper, we propose an approach of ranking similar PC movements given the CC information and show that exploiting this as additional features improves the directional prediction capacity of our model. We apply our ranking and directional prediction modeling methodologies on Bitcoin due to its highly volatile prices that make it challenging to predict its future movements.Comment: 5 pages, 2 figures, KDD 2023 Machine Learning in Finance worksho

    Topological insulating behaviour in conducting property of crystalline Ge-Sb-Te

    Full text link
    We report a discovery, through first-principles calculations, that crystalline Ge-Sb-Te (GST) phase-change materials exhibit the topological insulating property. Our calculations show that the materials become topological insulator or develop conducting surface-like interface states depending on the layer stacking sequence. It is shown that the conducting interface states originate from topological insulating Sb2Te3 layers in GSTs and can be crucial to the electronic property of the compounds. These interface states are found to be quite resilient to atomic disorders but sensitive to the uniaxial strains. We presented the mechanisms that destroy the topological insulating order in GSTs and investigated the role of Ge migration that is believed to be responsible for the amorphorization of GSTs.Comment: 13 pages, 4 figure

    New class of 3D topological insulator in double perovskite

    Full text link
    We predict a new class of three-dimensional topological insulators (TIs) in which the spin-orbit coupling (SOC) can more effectively generate a large band gap at Γ\Gamma point. The band gap of conventional TI such as Bi2_2Se3_3 is mainly limited by two factors, the strength of SOC and, from electronic structure perspective, the band gap when SOC is absent. While the former is an atomic property, we find that the latter can be minimized in a generic rock-salt lattice model in which a stable crossing of bands {\it at} the Fermi level along with band character inversion occurs for a range of parameters in the absence of SOC. Thus, large-gap TI's or TI's comprised of lighter elements can be expected. In fact, we find by performing first-principle calculations that the model applies to a class of double perovskites A2_2BiXO6_6 (A = Ca, Sr, Ba; X = Br, I) and the band gap is predicted up to 0.55 eV. Besides, more detailed calculations considering realistic surface structure indicate that the Dirac cones are robust against the presence of dangling bond at the boundary with a specific termination.Comment: submitted; title changed and new references added; see DOI for published versio

    Feature Engineering Using File Layout for Malware Detection

    Full text link
    Malware detection on binary executables provides a high availability to even binaries which are not disassembled or decompiled. However, a binary-level approach could cause ambiguity problems. In this paper, we propose a new feature engineering technique that use minimal knowledge about the internal layout on a binary. The proposed feature avoids the ambiguity problems by integrating the information about the layout with structural entropy. The experimental results show that our feature improves accuracy and F1-score by 3.3% and 0.07, respectively, on a CNN based malware detector with realistic benign and malicious samples.Comment: 2pages, no figures, This manuscript was presented in the poster session of The Annual Computer Security Applications Conference (ACSAC) 202

    First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites

    Get PDF
    Hybrid halide perovskite solar cells have recently attracted substantial attention, mainly because of their high power conversion efficiency. Among diverse variants, (CH3NH3)PbI3 and HC(NH2)(2)PbI3 are particularly promising candidates because their bandgap well matches the energy range of visible light. Here, we demonstrate that the large nonlinear photocurrent in beta-(CH3NH3)PbI3 and alpha -HC(NH2)(2)PbI3 is mostly determined by the intrinsic electronic band properties near the Fermi level, rooted in the inorganic backbone, whereas the ferroelectric polarization of the hybrid halide perovskite is largely dominated by the ionic contribution of the molecular cation. The spatial charge shift upon excitation is attributed to the charge transfer from iodine to lead atoms in the backbone, which is independent of the presence of the cationic molecules. Our findings can serve as a guiding principle for the design of future materials for halide-perovskite solar cells with further enhanced photovoltaic performance

    Optoelectronic manifestation of the orbital angular momentum driven by chiral hopping in helical Se chains

    Full text link
    Chiral materials have garnered significant attention in the field of condensed matter physics. Nevertheless, the magnetic moment induced by the chiral spatial motion of electrons in helical materials, such as elemental Te and Se, remains inadequately understood. In this work, we investigate the development of quantum angular momentum enforced by chirality using static and time-dependent density functional theory calculations for an elemental Se chain. Our findings reveal the emergence of an unconventional orbital texture driven by the chiral geometry, giving rise to a non-vanishing current-induced orbital moment. By incorporating spin-orbit coupling, we demonstrate that a current-induced spin accumulation arises in the chiral chain, which fundamentally differs from the conventional Edelstein effect. Furthermore, we demonstrate the optoelectronic detection of the orbital angular momentum in the chiral Se chain, providing a conceptually novel alternative to the interband Berry curvature, which is ill-defined in low dimensions.Comment: 24 pages, 4 figure
    corecore