1,160 research outputs found

    Spin/Orbital Pattern-Dependent Polaron Absorption in Nd(1-x)Sr(x)MnO3

    Full text link
    We investigated optical properties of Nd(1-x)Sr(x)MnO3 (x= 0.40, 0.50, 0.55, and 0.65) single crystals. In the spin/orbital disordered state, their conductivity spectra look quite similar, and the strength of the mid-infrared absorption peak is proportional to x(1-x) consistent with the polaron picture. As temperature lowers, the Nd(1-x)Sr(x)MnO3 samples enter into various spin/orbital ordered states, whose optical responses are quite different. These optical responses can be explained by the spin/orbital ordering pattern-dependent polaron hopping.Comment: 3 figures (gzipped

    Phonon Thermal Transport of URu2Si2: Broken Translational Symmetry and Strong-Coupling of the Hidden Order to the Lattice

    Get PDF
    A dramatic increase in the total thermal conductivity (k) is observed in the Hidden Order (HO) state of single crystal URu2Si2. Through measurements of the thermal Hall conductivity, we explicitly show that the electronic contribution to k is extremely small, so that this large increase in k is dominated by phonon conduction. An itinerant BCS/mean-field model describes this behavior well: the increase in kappa is associated with the opening of a large energy gap at the Fermi Surface, thereby decreasing electron-phonon scattering. Our analysis implies that the Hidden Order parameter is strongly coupled to the lattice, suggestive of a broken symmetry involving charge degrees of freedom.Comment: 17 pages including figures, updated author institutions and acknowledgement

    Magnetic-field-induced collapse of charge-ordered nanoclusters and the Colossal Magnetoresistance effect in Nd(0.3)Sr(0.3)MnO(3)

    Full text link
    We report synchrotron x-ray scattering studies of charge/orbitally ordered (COO) nanoclusters in Nd0.7_{0.7}Sr0.3_{0.3}MnO3_3. We find that the COO nanoclusters are strongly suppressed in an applied magnetic field, and that their decreasing concentration follows the field-induced decrease of the sample electrical resistivity. The COO nanoclusters, however, do not completely disappear in the conducting state, suggesting that this state is inhomogeneous and contains an admixture of an insulating phase. Similar results were also obtained for the zero-field insulator-metal transition that occurs as temperature is reduced. These observations suggest that these correlated lattice distortions play a key role in the Colossal Magnetoresistance effect in this prototypical manganite.Comment: 5 pages, 3 embedded eps figures; to appear in PRB Rapid Commumication

    Nucleolin promotes in vitro translation of feline calicivirus genomic RNA

    Get PDF
    AbstractFeline calicivirus depends on host-cell proteins for its replication. We previously showed that knockdown of nucleolin (NCL), a phosphoprotein involved in ribosome biogenesis, resulted in the reduction of FCV protein synthesis and virus yield. Here, we found that NCL may not be involved in FCV binding and entry into cells, but it binds to both ends of the FCV genomic RNA, and stimulates its translation in vitro. AGRO100, an aptamer that specifically binds and inactivates NCL, caused a strong reduction in FCV protein synthesis. This effect could be reversed by the addition of full-length NCL but not by a ΔrNCL, lacking the N-terminal domain. Consistent with this, FCV infection of CrFK cells stably expressing ΔrNCL led to a reduction in virus protein translation. These results suggest that NCL is part of the FCV RNA translational complex, and that the N-terminal part of the protein is required for efficient FCV replication

    On the origin of the zero-resistance anomaly in heavy fermion superconducting Ir: a clue from magnetic field and Rh-doping studies

    Full text link
    We present the results of the specific heat and AC magnetic susceptibility measurements of CeIr1xRhxIn5CeIr_{1-x}Rh_xIn_5 for x from 0 to 0.5. As x is increased from 0 both quantities reflect the competition between two effects. The first is a suppression of superconductivity below the bulk transition temperature of Tc=0.4_c = 0.4 K, which is due to the pair breaking effect of Rh impurities. The second is an increase in the volume fraction of the superconducting regions above Tc_c, which we attribute to defect-induced strain. Analysis of the H-T phase diagram for CeIrIn5_5obtained from the bulk probes and resistance measurements points to the filamentary origin of the inhomogeneous superconductivity at Tρ1.2_\rho \approx 1.2 K, where the resistance drops to zero. The identical anisotropies in the magnetic field dependence of the specific heat and the resistance anomalies in CeIrIn5_5 indicate that the filamentary superconductivity is intrinsic, involving electrons from the part of the Fermi surface responsible for bulk superconductivity.Comment: 4 page

    Observation of a multiferroic critical end point

    Full text link
    The study of abrupt increases in magnetization with magnetic field known as metamagnetic transitions has opened a rich vein of new physics in itinerant electron systems, including the discovery of quantum critical end points with a marked propensity to develop new kinds of order. However, the electric analogue of the metamagnetic critical end point, a "metaelectric" critical end point has not yet been realized. Multiferroic materials wherein magnetism and ferroelectricity are cross-coupled are ideal candidates for the exploration of this novel possibility using magnetic-field (\emph{H}) as a tuning parameter. Herein, we report the discovery of a magnetic-field-induced metaelectric transition in multiferroic BiMn2_{2}O5_{5} in which the electric polarization (\emph{P}) switches polarity along with a concomitant Mn spin-flop transition at a critical magnetic field \emph{H}c_{\rm c}. The simultaneous metaelectric and spin-flop transitions become sharper upon cooling, but remain a continuous crossover even down to 0.5 K. Near the \emph{P}=0 line realized at μ0\mu_{0}\emph{H}c_{\rm c}\approx18 T below 20 K, the dielectric constant (ε\varepsilon) increases significantly over wide field- and temperature (\emph{T})-ranges. Furthermore, a characteristic power-law behavior is found in the \emph{P}(\emph{H}) and ε\varepsilon(\emph{H}) curves at \emph{T}=0.66 K. These findings indicate that a magnetic-field-induced metaelectric critical end point is realized in BiMn2_2O5_5 near zero temperature.Comment: 6 pages, 3 figure

    Correlated Polarons in Dissimilar Perovskite Manganites

    Full text link
    We report x-ray scattering studies of broad peaks located at a (0.5 0 0)/(0 0.5 0)-type wavevector in the paramagnetic insulating phases of La_{0.7}Ca_{0.3}MnO_{3} and Pr_{0.7}Ca_{0.3}MnO_{3}. We interpret the scattering in terms of correlated polarons and measure isotropic correlation lengths of 1-2 lattice constants in both samples. Based on the wavevector and correlation lengths, the correlated polarons are found to be consistent with CE-type bipolarons. Differences in behavior between the samples arise as they are cooled through their respective transition temperatures and become ferromagnetic metallic (La_{0.7}Ca_{0.3}MnO_{3}) or charge and orbitally ordered insulating (Pr_{0.7}Ca_{0.3}MnO_{3}). Since the primary difference between the two samples is the trivalent cation size, these results illustrate the robust nature of the correlated polarons to variations in the relative strength of the electron-phonon coupling, and the sensitivity of the low-temperature ground state to such variations.Comment: 13 pages, 6 figure

    Polaron Absorption in a Perovskite Manganite La0.7Ca0.3MnO3

    Full text link
    Temperature dependent optical conductivity spectra of a La0.7Ca0.3MnO3 (LCMO) sample were measured. In the metallic regime at very low temperatures, they clearly showed two types of absorption features, i.e., a sharp Drude peak and a broad mid-infrared absorption band, which could be explained as coherent and incoherent bands of a large lattice polaron. This elementary excitation in LCMO was found to be in a strong coupling regime and to have interactions with the spin degree of freedom.Comment: 4 pages and separate 4 figure

    Thermal/Electronic Transport Properties and Two-Phase Mixtures in La_{5/8-x}Pr_{x}Ca_{3/8}MnO_{3}

    Full text link
    We measured thermal conductivity, k, thermoelectric power, S, and dc electric conductivity, sigma, of La_{5/8-x}Pr_{x}Ca_{3/8}MnO_{3}, showing an intricate interplay between metallic ferromagnetism (FM) and charge ordering (CO) instability. The change of k, S and sigma with temperature (T) and x agrees well with the effective medium theories for binary metal-insulator mixtures. This agreement clearly demonstrates that with the variation of T as well as x, the relative volumes of FM and CO phases drastically change and percolative metal-insulator transition occurs in the mixture of FM and CO domains.Comment: 8 pages, 4 eps figures included, to appear in Phys. Rev. Let
    corecore