302 research outputs found

    The role of phospholipase C in gabaergic inhibition and its relevance to epilepsy

    Get PDF
    Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in the intracellular signaling pathway and regulates various neuronal functions including neuronal development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the brain and discuss a pathophysiological relationship between PLC and epilepsy

    O-GlcNAcylation in health and neurodegenerative diseases

    Get PDF
    O-GlcNAcylation is a posttranslational modification that adds O-linked ??-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues of many proteins. This protein modification interacts with key cellular pathways involved in transcription, translation, and proteostasis. Although ubiquitous throughout the body, O-GlcNAc is particularly abundant in the brain, and various proteins commonly found at synapses are O-GlcNAcylated. Recent studies have demonstrated that the modulation of O-GlcNAc in the brain alters synaptic and neuronal functions. Furthermore, altered brain O-GlcNAcylation is associated with either the etiology or pathology of numerous neurodegenerative diseases, while the manipulation of O-GlcNAc exerts neuroprotective effects against these diseases. Although the detailed molecular mechanisms underlying the functional roles of O-GlcNAcylation in the brain remain unclear, O-GlcNAcylation is critical for regulating diverse neural functions, and its levels change during normal and pathological aging. In this review, we will highlight the functional importance of O-GlcNAcylation in the brain and neurodegenerative diseases

    Deletion of PLC??1 in GABAergic neurons increases seizure susceptibility in aged mice

    Get PDF
    Synaptic inhibition plays a fundamental role in the information processing of neural circuits. It sculpts excitatory signals and prevents hyperexcitability of neurons. Owing to these essential functions, dysregulated synaptic inhibition causes a plethora of neurological disorders, including epilepsy, autism, and schizophrenia. Among these disorders, epilepsy is associated with abnormal hyperexcitability of neurons caused by the deficits of GABAergic neuron or decreased GABAergic inhibition at synapses. Although many antiepileptic drugs are intended to improve GABA-mediated inhibition, the molecular mechanisms of synaptic inhibition regulated by GABAergic neurons are not fully understood. Increasing evidence indicates that phospholipase C??1 (PLC??1) is involved in the generation of seizure, while the causal relationship between PLC??1 and seizure has not been firmly established yet. Here, we show that genetic deletion of PLC??1 in GABAergic neurons leads to handling-induced seizure in aged mice. In addition, aged Plcg1F/F; Dlx5/6-Cre mice exhibit other behavioral alterations, including hypoactivity, reduced anxiety, and fear memory deficit. Notably, inhibitory synaptic transmission as well as the number of inhibitory synapses are decreased in the subregions of hippocampus. These findings suggest that PLC??1 may be a key determinant of maintaining both inhibitory synapses and synaptic transmission, potentially contributing to the regulation of E/I balance in the hippocampus

    L-Type Ca2+ Channel Inhibition Rescues the LPS-Induced Neuroinflammatory Response and Impairments in Spatial Memory and Dendritic Spine Formation

    Get PDF
    Ca2+ signaling is implicated in the transition between microglial surveillance and activation. Several L-type Ca2+ channel blockers (CCBs) have been shown to ameliorate neuroinflammation by modulating microglial activity. In this study, we examined the effects of the L-type CCB felodipine on LPS-mediated proinflammatory responses. We found that felodipine treatment significantly diminished LPS-evoked proinflammatory cytokine levels in BV2 microglial cells in an L-type Ca2+ channel-dependent manner. In addition, felodipine leads to the inhibition of TLR4/AKT/STAT3 signaling in BV2 microglial cells. We further examined the effects of felodipine on LPS-stimulated neuroinflammation in vivo and found that daily administration (3 or 7 days, i.p.) significantly reduced LPS-mediated gliosis and COX-2 and IL-1?? levels in C57BL/6 (wild-type) mice. Moreover, felodipine administration significantly reduced chronic neuroinflammation-induced spatial memory impairment, dendritic spine number, and microgliosis in C57BL/6 mice. Taken together, our results suggest that the L-type CCB felodipine could be repurposed for the treatment of neuroinflammation/cognitive function-associated diseases

    Transcription Factor Sp1 Is Involved in Expressional Regulation of Coxsackie and Adenovirus Receptor in Cancer Cells

    Get PDF
    Coxsackie and adenovirus receptor (CAR) was first known as a virus receptor. Recently, it is also known to have tumor suppressive activity such as inhibition of cell proliferation, migration, and invasion. It is important to understand how CAR expression can be regulated in cancers. Based on an existence of putative Sp1 binding site within CAR promoter, we investigated whether indeed Sp1 is involved in the regulation of CAR expression. We observed that deletion or mutation of Sp1 binding motif (−503/−498) prominently impaired the Sp1 binding affinity and activity of CAR promoter. Histone deacetylase inhibitor (TSA) treatment enhanced recruitment of Sp1 to the CAR promoter in ChIP assay. Meanwhile, Sp1 binding inhibitor suppressed the recruitment. Exogenous expression of wild-type Sp1 increased CAR expression in CAR-negative cells; meanwhile, dominant negative Sp1 decreased the CAR expression in CAR-positive cells. These results indicate that Sp1 is involved in regulation of CAR expression

    Clinical relevance of ground glass opacity in 105 patients with miliary tuberculosis

    Get PDF
    SummaryBackgroundAfter the application of chest computed tomography (CT), ground glass opacity (GGO) was introduced as one of major accompanying findings of miliary tuberculosis (MT) in addition to miliary nodules. However, little is known about whether GGO is associated with the clinical manifestations and outcomes of MT. Therefore, the present study examined the clinical relevance of GGO in patients with MT.MethodsChest radiographs and CT scans of MT patients were retrospectively reviewed. Clinical manifestations and outcomes were compared in terms of the extent of GGO revealed by chest CT.ResultsConfirmed 105 MT patients were included. GGO was observed in 70 (67%) patients. MT patients with an extent of GGO >50% (n = 21) had symptoms of shorter duration, more frequent dyspnea, and more pronounced changes in the levels of acute phase reactants. Miliary nodules were less discernible on CT in those with an extent of GGO >50%. MT patients with an extent of GGO >50% were significantly associated with a longer hospital stay (p = 0.02) and with acute respiratory failure (p < 0.001) than those with an extent of GGO ≤50%. However, mortality among MT patients was not associated with the extent of GGO.ConclusionMT patients with an extent of GGO >50% had more rapidly progressive manifestations and a greater potential for delayed diagnosis and poorer prognosis. Nevertheless, mortality was not higher in confirmed MT patients with an extent of GGO >50% than in those with an extent of GGO ≤50%

    Elevated RalA activity in the hippocampus of PI3K gamma knock-out mice lacking NMDAR-dependent long-term depression

    Get PDF
    Phosphoinositide 3-kinases (PI3Ks) play key roles in synaptic plasticity and cognitive functions in the brain. We recently found that genetic deletion of PI3K gamma, the only known member of class IB PI3Ks, results in impaired N-methyl-D-aspartate receptor-dependent long-term depression (NMDAR-LTD) in the hippocampus. The activity of RalA, a small GTP-binding protein, increases following NMDAR-LTD inducing stimuli, and this increase in RalA activity is essential for inducing NMDAR-LTD. We found that RalA activity increased significantly in PI3K gamma knockout mice. Furthermore, NMDAR-LTD-inducing stimuli did not increase RalA activity in PI3K gamma knockout mice. These results suggest that constitutively increased RalA activity occludes further increases in RalA activity during induction of LTD, causing impaired NMDAR-LTD. We propose that PI3K gamma regulates the activity of RalA, which is one of the molecular mechanisms inducing NMDAR-dependent LTD.open1

    Impaired learning and memory in CD38 null mutant mice

    Get PDF
    CD38 is an enzyme that catalyzes the formation of cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate, both of which are involved in the mobilization of Ca2+ from intracellular stores. Recently, CD38 has been shown to regulate oxytocin release from hypothalamic neurons. Importantly, CD38 mutations are associated with autism spectrum disorders (ASD) and CD38 knockout (CD38(-/-)) mice display ASD-like behavioral phenotypes including deficient parental behavior and poor social recognition memory. Although ASD and learning deficits commonly co-occur, the role of CD38 in learning and memory has not been investigated. We report that CD38(-/-)mice show deficits in various learning and memory tasks such as the Morris water maze, contextual fear conditioning, and the object recognition test. However, either long-term potentiation or long-term depression is not impaired in the hippocampus of CD38(-/-)mice. Our results provide convincing evidence that CD38(-/-)mice show deficits in various learning and memory tasks including spatial and non-spatial memory tasks. Our data demonstrate that CD38 is critical for regulating hippocampus-dependent learning and memory without modulating synaptic plasticity.open1

    Venous Thromboembolism in Korean Patients Undergoing Major Orthopedic Surgery: A Prospective Observational Study using Computed Tomographic (CT) Pulmonary Angiography and Indirect CT Venography

    Get PDF
    In patients undergoing major orthopedic surgery, data of deep venous thrombosis (DVT) and pulmonary embolism (PE) are lacking as studied by computed tomographic (CT) pulmonary angiography and indirect CT venography (CTPA-CTV). A prospective observational study was performed for 363 Korean patients undergoing major orthopedic surgery to determine the incidence of venous thromboembolism (VTE), especially proximal DVT and PE. The incidence of VTE was 16.3% (n=59). Of them, 8 patients (2.2%) were symptomatic. The rate of VTE was the highest in patients who underwent total knee replacement (40.4%), followed by hip fracture surgery (16.4%), and total hip replacement (8.7%; P<0.001). The incidence of PE was 6.6% (n=24). Of them, 4 patients (1.1%) were symptomatic. Forty-one patients (11.3%) were in the proximal DVT or PE group. Based on multivariate analysis, total knee replacement and age ≥65 yr were significant risk factors for proximal DVT or PE in patients undergoing major orthopedic surgery (odds ratio [OR], 2.4; 95% confidence interval [CI], 1.1-5.1; P=0.025; and OR, 2.1; 95% CI, 1.0-4.4; P=0.046, respectively). Taken together, the overall incidence of PE was 6.6% and rate of symptomatic PE rate was 1.1%. Knee joint replacement and age ≥65 yr were significant risk factors for proximal DVT or PE
    corecore