270,149 research outputs found
Electron and Photon Identification Performance in ATLAS
The understanding of the reconstruction and calibration of electrons and
photons is one of the key steps at the start-up of data-taking with ATLAS at
the LHC (Large Hadron Collider). The calorimeter cells are electronically
calibrated before being clustered. Corrections to local position and energy
measurements are applied to take into account the calorimeter geometry.
Finally, longitudinal weights are applied to correct for energy loss upstream
of the calorimeter. As a last step the Z -> ee events will be used for in-situ
calibration using the Z boson mass. The electron identification is based on the
shower shape in the calorimeter and relies heavily on the tracker and combined
tracker/calorimeter information to achieve the required rejection of 10^5
against QCD jets for a reasonably clean inclusive electron spectrum above 20-25
GeV. For photon identification, in addition to the shower shape in the
calorimeter, recovery of photon conversions is an essential ingredient given
the large amount of material in the inner tracker. The electron and photon
identification methods (cuts and multivariate analysis) will be discussed.Comment: Poster write-up at ICHEP08, Philadelphia, USA, July 2008. 4 pages,
LaTeX, 7 eps figures, 2 rtx files, 1 sty file and 1 cls fil
Mix-and-match compatibility in asymmetric system markets
This paper shows that the private incentive for mix-and-match compatibility in system markets diverges from the social planner's incentive if competing suppliers are asymmetric in production cost or product quality. There can be too much or too little compatibility when the market is served by fully integrated system suppliers. Also, the market outcome involves socially too much incompatibility in the form of exclusive technological alliances when the market is composed of independent component suppliers. These results contrast with the standard one obtained in the symmetric setup and shed new light on public policy towards compatibility, technological alliances, and bundling practices in system markets
Electronic structures of ZnCoO using photoemission and x-ray absorption spectroscopy
Electronic structures of ZnCoO have been investigated using
photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The
Co 3d states are found to lie near the top of the O valence band, with a
peak around eV binding energy. The Co XAS spectrum provides
evidence that the Co ions in ZnCoO are in the divalent Co
() states under the tetrahedral symmetry. Our finding indicates that the
properly substituted Co ions for Zn sites will not produce the diluted
ferromagnetic semiconductor property.Comment: 3 pages, 2 figure
Unsteady Flow in Cavitating Turbopumps
Unsteady flow in a cavitating axial inducer pump is analyzed with the help of a simple two-dimensional cascade model. This problem was motivated by a desire to study the effect of unsteady cavitation on the so-called POGO instability in the operation of liquid rocket engines. Here, an important feature is a closed loop coupling between several different modes of oscillation, one of which is due to the basic unsteady characterisitcs of the cavitation itself. The approaching and leaving flow velocities up- and downstream of the inducer oscillate, and the cavity-blade system participates dynamically with the basic pulsating flow. In the present work, attention is focused on finding a transfer matrix that relates the set of upstream variables to those downstream. This quantity, which is essentially equivalent to cavitation compliance in the quasistatic analyses, is found to be complex and frequency dependent. It represents the primary effect of the fluctuating cavity in the system. The analysis is based on a linearized free streamline theory
A Note on the Unsteady Cavity Flow in a Tunnel
The unsteady internal cavitating flow such as the one observed in a pump or a turbine is studied for a simple two-dimensional model of a base-cavitating wedge in an infinite tunnel and it is shown how the cavitation compliance can be calculated using the linearized free streamline theory. Numerical values are obtained for the limiting case of a free jet. Two important features are: First, the cavitation compliance is found to be of complex form, having additional resistive and reactive terms beyond the purely inertial oscillation of the whole channel in "slug flow." Second, the compliance has a strong dependence on frequency
- …