3 research outputs found

    Establishing ZIF-8 as a reference material for hydrogen cryoadsorption: An interlaboratory study

    Get PDF
    Hydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal-organic framework ZIF-8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF-8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF-8 pellets, which we want to propose as a reference material.M. Maiwald, J. A. Villajos, R. Balderas and M. Hirscher acknowledge the EMPIR programme from the European Union's Horizon 2020 research and innovation programme for funding. F. Cuevas and F. Couturas acknowledge support from France 2030 program under project ANR-22-PEHY-0007. D. Cazorla and A. Berenguer-Murcia thank the support by PID2021-123079OB-I00 project funded by MCIN/AEI/10.13039/501100011033, and “ERDF A way of making Europe”. K. N. Heinselman, S. Shulda and P. A. Parilla acknowledge the support from the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technology Office through the HyMARC Energy Materials Network

    High D2/H2 selectivity performance in MOF-303 under ambient pressure for potential industrial applications

    No full text
    The commercial demand for D2 is poised to increase significantly; however, the low natural abundance and the energy- and capital-intensive industrial separation (i.e., 24 K cryogenic distillation) will hamper future scientific and industrial growth in isotopologue separation. Alternatively, kinetic quantum sieving (KQS)-based adsorptive D2 separation has been proposed recently, but the separation performance is reported mostly at near zero pressure or in the sub-few ten mbar range. Herein, an Al-based Metal-Organic Framework, MOF-303, with 1-D narrow-micro pores is studied for D2/H2 adsorptive separation at ambient pressure. Cryogenic thermal desorption spectroscopic analysis of MOF-303 confirmed that the synergetic effect of binding affinity & enhanced KQS (owing to molecular rearrangement of D2 adsorbed phase at high pressure induced by strong D2 confinement), along with D2 partial condensation, leads to a significant increase in the D2 uptake with increasing exposure pressure up to 1,000 mbar. Consequently, a remarkable selectivity of 21.6 at 25 K has been achieved even at an operating pressure of 1000 mbar, which is an industry-friendly condition. The observed D2/H2 separation selectivity is about ten times higher than that of the industrial cryogenic method (best selectivity of below 2.5 at 24 K), and comparable to the performance of the adsorbent materials already reported with low operating pressure, making adsorptive D2/H2 separation through MOF-303 an alternative for cryogenic industrial isotopologue separation
    corecore