27 research outputs found

    GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    Get PDF
    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD -0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.open1

    First-time comparison between NO2 vertical columns from GEMS and Pandora measurements

    Get PDF
    The Geostationary Environmental Monitoring Spectrometer (GEMS) is a UV&ndash;visible spectrometer onboard the GEO-KOMPSAT-2B satellite launched into geostationary orbit in February 2020. To evaluate GEMS NO2 column data, comparison was carried out using NO2 vertical column density (VCD) measured using direct-sunlight observations by the Pandora spectrometer system at four sites in Seosan, South Korea, during November 2020 to January 2021. Correlation coefficients between GEMS and Pandora NO2 data at four sites ranged from 0.35 to 0.48, with root mean square errors (RMSEs) from 4.7 &times; 1015 molec. cm-2 to 5.5 &times; 1015 molec. cm-2 for cloud fraction (CF) &lt; 0.7. Higher correlation coefficients of 0.62&ndash;0.78 with lower RMSEs from 3.3 &times; 1015 molec. cm-2 to 4.3 &times; 1015 molec. cm-2 were found with CF &lt; 0.3, indicating the higher sensitivity of GEMS to atmospheric NO2 in less-cloudy conditions. Overall, GEMS NO2 column data tend to be lower than those of Pandora due to differences in representative spatial coverage, with a large negative bias under high-CF conditions. With correction for horizontal representativeness in Pandora measurement coverage, the correlation coefficients range from 0.69 to 0.81 with RMSEs from 3.2 &times; 1015 molec. cm-2 to 4.9 &times; 1015 molec. cm-2 were achieved for CF &lt; 0.3, showing the better correlation with the correction than that without the correction.</p

    First-time comparison between NO2 vertical columns from Geostationary Environmental Monitoring Spectrometer (GEMS) and Pandora measurements

    Get PDF
    The Geostationary Environmental Monitoring Spectrometer (GEMS) is a UV-visible (UV-Vis) spectrometer on board the GEO-KOMPSAT-2B (Geostationary Korea Multi-Purpose Satellite 2B) satellite launched into a geostationary orbit in February 2020. To evaluate the GEMS NO2 total column data, a comparison was carried out using the NO2 vertical column density (VCD) that measured direct sunlight using the Pandora spectrometer system at four sites in Seosan, South Korea, from November 2020 to January 2021. Correlation coefficients between GEMS and Pandora NO2 data at four sites ranged from 0.35 to 0.48, with root mean square errors (RMSEs) from 4.7×1015 to 5.5×1015 molec. cm−2 for a cloud fraction (CF) &lt;0.7. Higher correlation coefficients of 0.62–0.78 with lower RMSEs from 3.3×1015 to 5.0×1015 molec. cm−2 were found with CF &lt;0.3, indicating the higher sensitivity of GEMS to atmospheric NO2 in less cloudy conditions. Overall, the GEMS NO2 total column data tended to be lower than the Pandora data, owing to differences in the representative spatial coverage, with a large negative bias under high CF conditions. With a correction for horizontal representativeness in the Pandora measurement coverage, correlation coefficients ranging from 0.69 to 0.81, with RMSEs from 3.2×1015 to 4.9×1015 molec. cm−2, were achieved for CF &lt;0.3, showing a better correlation with the correction than without the correction.</p

    The axial fan noise simulation by the freewake method and acoustic analogy

    No full text
    Abstract In this paper, we performed the noise analysis for the large size axial fan with a duct. We acquired pressure fluctuation data by flow field analysis and with these data, noise prediction was implemented by the acoustic analogy. These data were compared with the measurement value. So, we verified this method for noise prediction

    A Study on Application of F.P.S. Method to The Limit Analysis

    No full text

    Determination of the inter-annual and spatial characteristics of the contribution of long-range transport to SO2 levels in Seoul between 2001 and 2010 based on conditional potential source contribution function (CPSCF)

    No full text
    In this paper, we introduce a new method to estimate the change in mean mixing ratio of a target species at a receptor site due to the contribution of the long-range transport (CLRT). We applied our method to determine inter-annual and inter-seasonal variations in the CLRT of SO2 in Seoul, a major megacity in northeast Asia, during the period from 2001 to 2010. The major potential source areas of SO2 for the 2001-2010 period were located in East China according to the potential source contribution function (PSCF) maps. The CLRT of SO2 in Seoul was estimated to range from 0.40 to 1.03 ppb, which accounted for 8-21% of the ambient mean SO2 mixing ratio in Seoul. The inter-annual variations of estimated CLRT of SO2 was well correlated with those of the total emissions in China during the period of 2001-2008 (R = 0.85). We found that both local emissions from around Seoul and long-range transport from East China, especially the Shandong peninsula, affected the SO2 mixing ratio in Seoul throughout the decade of study. The CLRT of SO2 in Seoul increased after 2007 even though the total emissions of SO2 by China have been decreasing since 2006. The CLRT of SO2 in Seoul was high in spring and winter, which can be attributed to enhanced SO2 emissions in East China during these seasons and a dominant westerly wind. The CLRTs of SO2 accounted for 15,11,4, and 12% of the seasonal mean SO2 mixing ratio in spring, summer, fall, and winter, respectively. The uncertainty ranged from 24 to 62% of the estimated CLRT values.close2

    The Effects of Aerosol on the Retrieval Accuracy of NO2 Slant Column Density

    No full text
    We investigate the effects of aerosol optical depth (AOD), single scattering albedo (SSA), aerosol peak height (APH), measurement geometry (solar zenith angle (SZA) and viewing zenith angle (VZA)), relative azimuth angle, and surface reflectance on the accuracy of NO2 slant column density using synthetic radiance. High AOD and APH are found to decrease NO2 SCD retrieval accuracy. In moderately polluted (5 × 1015 molecules cm−2 &lt; NO2 vertical column density (VCD) &lt; 2 × 1016 molecules cm−2) and clean regions (NO2 VCD &lt; 5 × 1015 molecules cm−2), the correlation coefficient (R) between true NO2 SCDs and those retrieved is 0.88 and 0.79, respectively, and AOD and APH are about 0.1 and is 0 km, respectively. However, when AOD and APH are about 1.0 and 4 km, respectively, the R decreases to 0.84 and 0.53 in moderately polluted and clean regions, respectively. On the other hand, in heavily polluted regions (NO2 VCD &gt; 2 × 1016 molecules cm−2), even high AOD and APH values are found to have a negligible effect on NO2 SCD precision. In high AOD and APH conditions in clean NO2 regions, the R between true NO2 SCDs and those retrieved increases from 0.53 to 0.58 via co-adding four pixels spatially, showing the improvement in accuracy of NO2 SCD retrieval. In addition, the high SZA and VZA are also found to decrease the accuracy of the NO2 SCD retrieval
    corecore