1,953 research outputs found
Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion
Computed Tomography (CT) reconstruction is a fundamental component to a wide
variety of applications ranging from security, to healthcare. The classical
techniques require measuring projections, called sinograms, from a full
180 view of the object. This is impractical in a limited angle
scenario, when the viewing angle is less than 180, which can occur due
to different factors including restrictions on scanning time, limited
flexibility of scanner rotation, etc. The sinograms obtained as a result, cause
existing techniques to produce highly artifact-laden reconstructions. In this
paper, we propose to address this problem through implicit sinogram completion,
on a challenging real world dataset containing scans of common checked-in
luggage. We propose a system, consisting of 1D and 2D convolutional neural
networks, that operates on a limited angle sinogram to directly produce the
best estimate of a reconstruction. Next, we use the x-ray transform on this
reconstruction to obtain a "completed" sinogram, as if it came from a full
180 measurement. We feed this to standard analytical and iterative
reconstruction techniques to obtain the final reconstruction. We show with
extensive experimentation that this combined strategy outperforms many
competitive baselines. We also propose a measure of confidence for the
reconstruction that enables a practitioner to gauge the reliability of a
prediction made by our network. We show that this measure is a strong indicator
of quality as measured by the PSNR, while not requiring ground truth at test
time. Finally, using a segmentation experiment, we show that our reconstruction
preserves the 3D structure of objects effectively.Comment: Spotlight presentation at CVPR 201
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity
Gating of memory encoding of time-delayed cross-frequency MEG networks revealed by graph filtration based on persistent homology
To explain gating of memory encoding, magnetoencephalography (MEG) was analyzed over multi-regional network of negative correlations between alpha band power during cue (cue-alpha) and gamma band power during item presentation (item-gamma) in Remember (R) and No-remember (NR) condition. Persistent homology with graph filtration on alpha-gamma correlation disclosed topological invariants to explain memory gating. Instruction compliance (R-hits minus NR-hits) was significantly related to negative coupling between the left superior occipital (cue-alpha) and the left dorsolateral superior frontal gyri (item-gamma) on permutation test, where the coupling was stronger in R than NR. In good memory performers (R-hits minus false alarm), the coupling was stronger in R than NR between the right posterior cingulate (cue-alpha) and the left fusiform gyri (item-gamma). Gating of memory encoding was dictated by inter-regional negative alpha-gamma coupling. Our graph filtration over MEG network revealed these inter-regional time-delayed cross-frequency connectivity serve gating of memory encoding
Feeling Torn? The Conflicting Effects of Market and Entrepreneurial Orientations on Manufacturing SMEs’ Innovation Performance
departmental bulletin pape
Students’ Self-Report of Motivational Orientation and Teacher Evaluation on Coping and Motivational Orientation Related to Elementary Students’ Mathematical Problem Solving and Reading Comprehension
The present study examined the correlations between motivational orientation and students’ academic performance in mathematical problem solving and reading comprehension. The main purpose is to see if students’ intrinsic motivation is related to their actual performance in different subject areas, math and reading. In addition, two different informants, students and teachers, were adopted to check whether the correlation is different by different informants. Pearson’s correlational analysis was a major method, coupled with regression analysis. The result confirmed the significant positive correlation between students’ academic performance and students’ self-report and teacher evaluation on their motivational orientation respectively. Teacher evaluation turned out with more predictive value for the academic achievement in math and reading. Between the subjects, mathematical problem solving showed higher correlation with most of the motivational subscales than reading comprehension did. The highest correlation was found between teacher evaluation on task orientation and students’ mathematical problem solving. The positive relationship between intrinsic motivation and academic achievement was proved. The disparity between students ’ self-report and teacher evaluation on motivational orientation was also addressed with the need of further examination.Siirretty Doriast
Satellite-based auroral tomography and time-varying volume reconstruction
Tomography, originally developed to observe the internal structure of a human body in medical applications, can also be applied to research in Space Science applications. An upcoming satellite mission incorporates two imagers for auroral observation in the upper atmosphere. For this mission, development of auroral volume reconstruction using tomographic imaging is useful for understanding the internal structure of auroras. We have shown that beam-pixel clipping in image reconstruction improves the quality of reconstructed images, compared to previous techniques. The goal is to develop a suitable algorithm for auroral volume reconstruction using auroral images measured from satellite-borne optical instruments. We have demonstrated that weighting factor approximation in algebraic methods plays a crucial role in the quality of volume reconstruction. We also have evaluated the effectiveness of this algorithm with measured images of known volumes using perspective projections. In addition, a time-varying volume reconstruction scheme is discussed where auroras move over time
Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe
Background - Protein cage nanoparticles are promising nanoplatform candidates for efficient delivery systems of diagnostics and/or therapeutics because of their uniform size and structure as well as high biocompatibility and biodegradability. Encapsulin protein cage nanoparticle is used to develop a cell-specific targeting optical nanoprobe.
Results - FcBPs are genetically inserted and successfully displayed on the surface of encapsulin to form FcBP-encapsulin. Selectively binding of FcBP-encapsulin to SCC-7 is visualized with fluorescent microscopy.
Conclusions - Encapsulin protein cage nanoparticle is robust enough to maintain their structure at high temperature and easily acquires multifunctions on demand through the combination of genetic and chemical modifications.ope
Human platelet lysate improves human cord blood derived ECFC survival and vasculogenesis in three dimensional (3D) collagen matrices
Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post-matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31(+) vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC
- …
