37 research outputs found

    Linewidth broadening of a quantum dot coupled to an off-resonant cavity

    Get PDF
    We study the coupling between a photonic crystal cavity and an off-resonant quantum dot under resonant excitation of the cavity or the quantum dot. Linewidths of the quantum dot and the cavity as a function of the excitation laser power are measured. We show that the linewidth of the quantum dot, measured by observing the cavity emission, is significantly broadened compared to the theoretical estimate. This indicates additional incoherent coupling between the quantum dot and the cavity.Comment: 5 pages, 4 figure

    Quantum and classical information processing with a single quantum dot in photonic crystal cavity

    Get PDF
    The experiments show that the coupled QD-cavity system is a promising candidate for probing CQED as well as for optical information processing. Our present work includes building of a three level system in a QD coupled to cavity, which is essential for construction of any quantum information processing devices

    Optical manipulation of quantum dot excitons strongly coupled to photonic crystal cavities

    Get PDF
    In this paper, we review some recent cavity quantum electrodynamic (CQED) experiments with single quantum dot exciton coupled to photonic crystal cavities, performed in our group. We show how the coupled quantum-dot/cavity system can be used to modulate light with at a very fundamental level with very low power and discuss some applications of these low power modulators

    Independent electrical tuning of separated quantum dots in coupled photonic crystal cavities

    Get PDF
    Systems of photonic crystal cavities coupled to quantum dots are a promising architecture for quantum networking and quantum simulators. The ability to independently tune the frequencies of laterally separated quantum dots is a crucial component of such a scheme. Here, we demonstrate independent tuning of laterally separated quantum dots in photonic crystal cavities coupled by in-plane waveguides by implanting lines of protons which serve to electrically isolate different sections of a diode structure.Comment: 3 pages, 3 figure

    Strain-tuning of quantum dot optical transitions via laser-induced surface defects

    Get PDF
    We discuss the fine-tuning of the optical properties of self-assembled quantum dots by the strain perturbation introduced by laser-induced surface defects. We show experimentally that the quantum dot transition red-shifts, independently of the actual position of the defect, and that such frequency shift is about a factor five larger than the corresponding shift of a micropillar cavity mode resonance. We present a simple model that accounts for these experimental findings.Comment: 9 pages, 6 figures. To appear in Phys. Rev.

    Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons

    Get PDF
    Photonic crystal membranes (PCM) provide a versatile planar platform for on-chip implementations of photonic quantum circuits. One prominent quantum element is a coupled system consisting of a nanocavity and a single quantum dot (QD) which forms a fundamental building block for elaborate quantum information networks and a cavity quantum electrodynamic (cQED) system controlled by single photons. So far no fast tuning mechanism is available to achieve control within the system coherence time. Here we demonstrate dynamic tuning by monochromatic coherent acoustic phonons formed by a surface acoustic wave (SAW) with frequencies exceeding 1.7 gigahertz, one order of magnitude faster than alternative approaches. We resolve a periodic modulation of the optical mode exceeding eight times its linewidth, preserving both the spatial mode profile and a high quality factor. Since PCMs confine photonic and phononic excitations, coupling optical to acoustic frequencies, our technique opens ways towards coherent acoustic control of optomechanical crystals.Comment: 11 pages 4 figure
    corecore