27,519 research outputs found

    CP1CP^{1} model with Hopf term and fractional spin statistics

    Get PDF
    We reconsider the CP1CP^{1} model with the Hopf term by using the Batalin-Fradkin-Tyutin (BFT) scheme, which is an improved version of the Dirac quantization method. We also perform a semi-classical quantization of the topological charge Q sector by exploiting the collective coordinates to explicitly show the fractional spin statistics.Comment: 15 page

    Ferromagnetism at 300 K in spin-coated films of Co doped anatase and rutile TiO2

    Full text link
    Thin films of Ti1-xCoxO2 (x=0 and 0.03) have been prepared on sapphire substrates by spin-on technique starting from metalorganic precursors. When heat treated in air at 550 and 700 C respectively, these films present pure anatase and rutile structures as shown both by X-ray diffraction and Raman spectroscopy. Optical absorption indicate a high degree of transparency in the visible region. Such films show a very small magnetic moment at 300 K. However, when the anatase and the rutile films are annealed in a vacuum of 1x10-5 Torr at 500 oC and 600 oC respectively, the magnetic moment, at 300 K, is strongly enhanced reaching 0.36 B/Co for the anatase sample and 0.68 B/Co for the rutile one. The ferromagnetic Curie temperature of these samples is above 350 K.Comment: 31 july 200

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Sections for 6Li + 208Pb System at Near-Coulomb-Barrier Energies by using Folding Potential

    Get PDF
    Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous χ2\chi^{2} analyses are performed for elastic scattering and fusion cross section data for the 6^{6}Li+208^{208}Pb system at near-Coulomb-barrier energies. A folding potential is used as the bare potential. It is found that the real part of the resultant DR part of the polarization potential is repulsive, which is consistent with the results from the Continuum Discretized Coupled Channel (CDCC) calculations and the normalization factors needed for the folding potentials. Further, it is found that both DR and fusion parts of the polarization potential satisfy separately the dispersion relation.Comment: 6 figure

    BFT Hamiltonian embedding for SU(3) Skyrmion

    Full text link
    We newly apply the Batalin, Fradkin and Tyutin (BFT) formalism to the SU(3) flavor Skyrmion model to investigate the Weyl ordering correction to the structure of the hyperfine splittings of strange baryons. On the other hand, the Berry phases and Casimir effects are also discussed.Comment: 14 pages, modified titl

    Symplectic embedding and Hamilton-Jacobi analysis of Proca model

    Full text link
    Following the symplectic approach we show how to embed the Abelian Proca model into a first-class system by extending the configuration space to include an additional pair of scalar fields, and compare it with the improved Dirac scheme. We obtain in this way the desired Wess-Zumino and gauge fixing terms of BRST invariant Lagrangian. Furthermore, the integrability properties of the second-class system described by the Abelian Proca model are investigated using the Hamilton-Jacobi formalism, where we construct the closed Lie algebra by introducing operators associated with the generalized Poisson brackets.Comment: 24 page

    Flavor symmetry breaking effects on SU(3) Skyrmion

    Get PDF
    We study the massive SU(3) Skyrmion model to investigate the flavor symmetry breaking (FSB) effects on the static properties of the strange baryons in the framework of the rigid rotator quantization scheme combined with the improved Dirac quantization one. Both the chiral symmetry breaking pion mass and FSB kinetic terms are shown to improve cc the ratio of the strange-light to light-light interaction strengths and cˉ\bar{c} that of the strange-strange to light-light.Comment: 12 pages, latex, no figure

    Mesons and nucleons from holographic QCD in a unified approach

    Full text link
    We investigate masses and coupling constants of mesons and nucleons within a hard wall model of holographic QCD in a unified approach. We first examine an appropriate form of fermionic solutions by restricting the mass coupling for the five dimensional bulk fermions and bosons. We then derive approximated analytic solutions for the nucleons and the corresponding masses in a small mass coupling region. In order to treat meson and nucleon properties on the same footing, we introduce the same infrared (IR) cut in such a way that the meson-nucleon coupling constants, i.e., g_{pi NN} and g_{rho NN} are uniquely determined. The first order approximation with respect to a dimensionless expansion parameter, which is valid in the small mass coupling region, explicitly shows difficulties to avoid the IR scale problem of the hard wall model. We discuss possible ways of circumventing these problems.Comment: 15 pages, No figure. Several typos have been remove

    Extended Optical Model Analyses of Elastic Scattering, Direct Reaction, and Fusion Cross Sections for the 9Be + 208Pb System at Near-Coulomb-Barrier Energies

    Full text link
    Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous χ2\chi^{2} analyses are performed for elastic scattering, DR, and fusion cross section data for the 9^{9}Be+208^{208}Pb system at near-Coulomb-barrier energies. Similar χ2\chi^{2} analyses are also performed by only taking into account the elastic scattering and fusion data as was previously done by the present authors, and the results are compared with those of the full analysis including the DR cross section data as well. We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable predictions of cross sections particularly when the DR cross section data are not complete. Discussions are also given on the results obtained from similar analyses made earlier for the 9^{9}Be+209^{209}Bi system.Comment: 5 figure
    • …
    corecore