56 research outputs found

    Examining the Impact of Spatial Development Patterns on Regional Heat Island Effect in Metropolitan Regions of the United States

    Get PDF
    The urban heat island effect is considered one of the main causes of global warming and is contributing to increasing temperatures in the urban United States. This phenomenon enhances the intensity of summer heat waves and the risk to public health due to increased exposure to extreme thermal conditions. Characteristics of spatial development patterns can significantly affect urban temperature because they are related to the arrangement of development and land surface materials, which are crucial elements needed to determine land surface temperature. While previous studies revealed that the effect of the urban heat island varies depending on different land use types and surface characteristics, few have considered the overall development patterns of urban form. I address this under-studied aspect of heat hazards by analyzing the relationship between spatial development pattern and urban heat island effect across a sample of 353 metropolitan regions of the U.S. Specifically, I employ a series of landscape metrics to measure urban development patterns using a national land cover dataset from the U.S. Geological Survey. Linear regression models are used to statistically isolate the effect of different spatial development patterns on increasing the urban heat island effect while controlling for multiple contextual variables including built-environment, environmental, and demographic characteristics. The result of this study showed that the daytime mean surface urban heat island effect (4.04˚F) is higher than that of nighttime (2.41˚F). Ecological context (i.e. Ecoregions) has proved to be a statistically significant modulator that helps to explain the spatial distribution of the urban heat island effect. Regarding the main research question of this study, the results indicate that specific categories of urban development pattern including density, continuity, and clustering are statistically associated with increasing the urban heat island effect. This initial evidence suggests that the overall development patterns are an important issue to consider when mitigating the adverse impacts related to the urban heat island effect. In addition, when contextual heat contributors are held constant, the intensity of the urban heat island effect can differ depending on the configuration of development in urban areas. This study can be used as a starting point for a comprehensive approach to both spatial land development and hazard-resistant planning by providing alternative ways of measuring and modeling spatial development patterns

    Subgroups of cancer patients with unique pain and fatigue experiences during chemotherapy

    Get PDF
    Context. Some cancer patients experience pain and fatigue, whereas others experience only one of the two symptoms. Yet, it is not clear who experiences these unique patterns and why. Objectives. This study aimed to identify subgroups of cancer patients with unique pain and fatigue experiences in two different chemotherapy cycles to examine how selected factors influenced subgroup membership and identify how subgroups differed in concurrently measured functional limitation outcome. Methods. The sample included 276 patients with diverse cancer types from four U.S. sites. To investigate subgroups, latent profile analyses were performed. Multinomial logistic regression and one-way analysis of variance-type analyses were conducted to examine the influencing variables of subgroup membership and to examine differences among subgroups in patient outcome. Results. The high-pain/high-fatigue (HPHF) and low-pain/low-fatigue subgroups were found at both time points. The low-pain/high-fatigue subgroup was present only in the first chemotherapy cycle. Pain and fatigue levels significantly differentiated subgroups at each time point (all P \u3c 0.05). Across the two time points, experiencing higher depressed mood increased the risk to be in the HPHF subgroup (all P \u3c 0.01). The HPHF subgroup had the most serious limitations in activities (all P \u3c 0.01). Conclusion. This study confirmed the existence of a unique symptom experience of pain and fatigue. This pattern should be acknowledged for symptom assessment and management

    Translation, Cultural Adaptation, and Validation of a Korean Version of the Information Needs in Cardiac Rehabilitation Scale

    Get PDF
    Objective To translate and culturally adapt the Information Needs in Cardiac Rehabilitation (INCR) questionnaire into Korean and perform psychometric validation. Methods The original English version of the INCR, in which patients are asked to rate the importance of 55 topics, was translated into Korean (INCR-K) and culturally adapted. The INCR-K was tested on 101 cardiac rehabilitation (CR) participants at Kangwon National University Hospital and Seoul National University Bundang Hospital in Korea. Structural validity was assessed using principal component analysis, and Cronbach’s alpha of the areas was computed. Criterion validity was assessed by comparing information needs according to CR duration and knowledge sufficiency according to receipt of education. Half of the participants were randomly selected for 1 month of re-testing to assess their responsiveness. Results Following cognitive debriefing, the number of items was reduced to 41 and ratings were added to assess participants’ sufficient knowledge of each item. The INCR-K structure comprised eight areas, each with sufficient internal consistency (Cronbach’s alpha>0.7). Criterion validity was supported by significant differences in mean INCR-K scores based on CR duration and knowledge sufficiency ratings according to receipt of education (p<0.05). Information needs and knowledge sufficiency ratings increased after 1 month of CR, thus supporting responsiveness (p<0.05). Conclusion The INCR-K demonstrated adequate face, content, cross-cultural, structural, and criterion validities, internal consistency, and responsiveness. Information needs changed with CR, such that multiple assessments of information needs may be warranted as rehabilitation progresses to facilitate patient-centered education

    Translocation of residual ethoprophos and tricyclazole from soil to spinach

    Get PDF
    The dissipation of ethoprophos and tricyclazole in soil and their translocation tendency to spinach were investigated. Prior to field trials, the analytical method for the determination of these pesticide residues was optimized and validated on soil and spinach. The field trial was conducted under greenhouse conditions for two different pretreatment periods with the pesticides. After treating with pesticides 30 (PBI-30) and 60 days (PBI-60) before seeding, soil samples were collected on different days for the dissipation study of soil. Spinach samples were harvested from the soil, and 50% and 100% mature spinach samples were collected. The initial amounts of ethoprophos residue in the PBI-60 and PBI-30 soils were 0.21 and 2.74 mg/kg, respectively, and these both decreased to less than 0.01 mg/kg on the day of spinach harvest. Similar initial residues of tricyclazole were observed in the PBI-60 (0.87 mg/kg) and PBI-30 soils (0.84 mg/kg), and these decreased to 0.44 and 0.34 mg/kg, respectively. The half-lives of ethoprophos in the soils were calculated as 7.6 and 4.8 days, respectively, while relatively long half-lives of 36.5 and 77.0 days were calculated for tricyclazole. According to the pesticide residue amounts in the spinach, the translocation rate from the soil to the spinach was determined. In the case of ethoprophos, the residual amount was already rapidly degraded in the soil, and the translocation rate could not be confirmed. On the other hand, for tricyclazole, it was confirmed that 1.19 to 1.61% of the residual amount in soil was transferred to spinach. According to these results, safe management guidelines for tricyclazole in soil were suggested considering the maximum residue limit on spinach.This work was supported by the Rural Development Administration (PJ0152772020)

    Time-Resolved in Situ Visualization of the Structural Response of Zeolites During Catalysis

    Get PDF
    Zeolites are three-dimensional aluminosilicates having unique properties from the size and connectivity of their sub-nanometer pores, the Si/Al ratio of the anionic framework, and the charge-balancing cations. The inhomogeneous distribution of the cations affects their catalytic performances because it influences the intra-crystalline diffusion rates of the reactants and products. However, the structural deformation regarding inhomogeneous active regions during the catalysis is not yet observed by conventional analytical tools. Here we employ in situ X-ray free electron laser-based time-resolved coherent X-ray diffraction imaging to investigate the internal deformations originating from the inhomogeneous Cu ion distributions in Cu-exchanged ZSM-5 zeolite crystals during the deoxygenation of nitrogen oxides with propene. We show that the interactions between the reactants and the active sites lead to an unusual strain distribution, confirmed by density functional theory simulations. These observations provide insights into the role of structural inhomogeneity in zeolites during catalysis and will assist the future design of zeolites for their applications

    Delivery of Synthesized Entities to Specific Genomic Loci in Mammalian Cells via a Modified CRISPR/Cas9 System

    No full text
    Histone post-translational modifications (PTMs) are chemical modifications that function as a combinatorial code to carefully orchestrate gene expression in eukaryotic organisms. This code leads to cellular function through mostly direct interactions with PTM reading, writing, and erasing enzymes beginning at the level of a single nucleosome. Aberrations in the code or the regulatory mechanisms are implicated in numerous human diseases, including oncogenesis. However, the causal role of these histone PTMs on in vivo recruitment of PTM effectors and crosstalk with other PTMs are difficult to tease apart with traditional biological tools that use only genetically accessible constructs. Advancements in synthetic peptide chemistry has allowed for atomic scale control of in vitro studies by directly characterizing the interactions between synthesized histone PTMs and relevant effectors in a simplified setting. In order to bridge the precise combinatorial control of synthetic chemistry to biologically appropriate sites and resolution, we have developed an approach that utilizes protein trans-splicing (PTS) to covalently join synthetic cargoes with Cas9, an expressed programmable gene-targeting platform. As a proof of concept, an exogenously prepared transcription-activating domain(VP64) was delivered and ligated in vivo on to Cas9 to directly increase transcription activation. Furthermore, this method was applied to study the direct effects of histone H3 polyacetylation on transcription on a specific gene locus. H3 polyacetylation has been correlated with actively transcribed genes but no causal relationship has been established. This method presents a general paradigm for localization of synthetic entities to specific genomic loci in mammalian cells for inquires in epigenetics and otherwise

    Establishment of a Geographic Information System-Based Algorithm to Analyze Suitable Locations for Green Roofs and Roadside Trees

    No full text
    Urban green spaces offer various ecosystem services such as those for controlling the urban microclimate, improving water circulation, and providing leisure and recreation opportunities. However, it is almost impossible to create new, large green spaces in cities where urbanization has been long underway. Consequently, small-scale green spaces such as green roofs and roadside trees are gaining attention as features that can increase the effects of ecosystem services. Although the area of individual buildings in urban areas is relatively small, the sum of building rooftop areas account for a large portion of urban areas. Moreover, there are areas widely available throughout cities where street trees could be planted. However, this requires large amounts of accurate databases (DBs) and long-term spatial analyses to identify specific locations suitable for small-scale green facilities on a citywide scale using a geographic information system (GIS). Consequently, in-depth research on this topic has been insufficient. Thus, this study presents an algorithm to analyze locations where green roofs and roadside trees could be introduced based on GIS spatial analysis and verifies the effectiveness of the algorithm built for the city of Seoul. In addition, computational fluid dynamics (CFD) modeling is performed to analyze the temperature reduction effect, the representative function of ecosystem control services that can be brought about by the potential green spaces. The results show that rooftop greening in study areas is possible in 311,793 of 742,770 buildings. The rooftop floor area of buildings that can apply rooftop greening is 33,288,745 m2, which is about 50% of the total area of the rooftop in Seoul. It was found that roadside trees could be planted on a sidewalk with an extension length of 872,725 m and an area of 838,864 m2. A total of 145,366 trees can be planted in the study area. In addition, it was shown that the introduction of green roofs reduced temperatures by 0.13 °C to 0.14 °C and roadside trees reduced temperatures by 0.14 °C to 0.6 °C. With the growing need to improve urban ecosystem services as a result of rapid climate change, the algorithm developed in this study can be utilized to create spatial policies that expand and manage urban green spaces and thereby contribute to the improvement of urban ecosystem services

    Optimization of Processor Clock Frequency for Sensor Network Nodes Based on Energy Use and Timing Constraints

    No full text
    The effectiveness of sensor networks depends critically on efficient power management of the sensor nodes. Dynamic voltage frequency scaling (DVFS) and dynamic power management (DPM) have been proposed to enable energy-efficient scheduling for real-time and embedded systems. However, most power-aware scheduling algorithms are designed to deal with only those cases in which the task execution time is determined solely by the clock frequency of the processor. In this study, we propose an extended task execution model that is appropriate for the sensor nodes and an algorithm that determines the optimal clock frequency for a node's processor. We analyze the extended model and verify that our algorithm calculates the clock frequency that optimizes energy savings while satisfying the timing constraints
    corecore