18 research outputs found

    Complement Factor H Mutation W1206R Causes Retinal Thrombosis and Ischemic Retinopathy in Mice

    Get PDF
    © 2019 American Society for Investigative Pathology Single-nucleotide polymorphisms and rare mutations in factor H (FH; official name, CFH) are associated with age-related macular degeneration and atypical hemolytic uremic syndrome, a form of thrombotic microangiopathy. Mice with the FH W1206R mutation (FH R/R ) share features with human atypical hemolytic uremic syndrome. Herein, we report that FH R/R mice exhibited retinal vascular occlusion and ischemia. Retinal fluorescein angiography demonstrated delayed perfusion and vascular leakage in FH R/R mice. Optical coherence tomography imaging of FH R/R mice showed retinal degeneration, edema, and detachment. Histologic analysis of FH R/R mice revealed retinal thinning, vessel occlusion, as well as degeneration of photoreceptors and retinal pigment epithelium. Immunofluorescence showed albumin leakage from blood vessels into the neural retina, and electron microscopy demonstrated vascular endothelial cell irregularity with narrowing of retinal and choroidal vessels. Knockout of C6, a component of the membrane attack complex, prevented the aforementioned retinal phenotype in FH R/R mice, consistent with membrane attack complex–mediated pathogenesis. Pharmacologic blockade of C5 also rescued retinas of FH R/R mice. This FH R/R mouse strain represents a model for retinal vascular occlusive disorders and ischemic retinopathy. The results suggest complement dysregulation can contribute to retinal vascular occlusion and that an anti-C5 antibody might be helpful for C5-mediated thrombotic retinal diseases

    Complement terminal pathway inhibition reduces peritoneal injuries in a rat peritonitis model

    No full text
    Peritonitis and the resulting peritoneal injuries are common problems that prevent long-term peritoneal dialysis (PD) therapy in patients with end-stage kidney diseases. Previously, we have analyzed the relationship between the complement system and progression of peritoneal injuries associated with PD, particularly focusing on the early activation pathways and effects of the anaphylatoxins. We here utilized a novel mAb 2H2 that blocks assembly of the membrane attack complex (MAC) to investigate roles of the complement terminal pathway in PD-associated peritoneal injury. We intraperitoneally injected mAb 2H2 anti-C5b-7 (2.5 or 5 mg/rat) once or twice over the five-day course of the experiment to investigate the effects of inhibiting formation of MAC in a fungal rat peritonitis model caused by repeated intraperitoneal administration of zymosan after methylglyoxal pretreatment (Zy/MGO model). Rats were sacrificed on day 5 and macroscopic changes in both parietal and visceral peritoneum evaluated. Peritoneal thickness, the abundance of fibrinogen and complement C3 and MAC deposition in tissue and accumulation of inflammatory cells were pathologically assessed. The results showed that mAb 2H2, but not isotype control mAb, reduced peritoneal thickness and accumulation of inflammatory cells in a dose and frequency-dependent manner in the Zy/MGO model. These effects were accompanied by decreased C3, MAC, and fibrinogen deposition in peritoneum. In conclusion, in the rat Zy/MGO model, complement terminal pathway activation and MAC formation substantially contributed to development of peritoneal injuries, suggesting that MAC-targeted therapies might be effective in preventing development of peritoneal injuries in humans

    Serum and plasma levels of Ba, but not those of soluble C5b-9, might be affected by renal function in chronic kidney disease patients

    No full text
    Abstract Background During the last few decades, pathogenic mechanisms associated with uncontrolled activation of the complement (C) system and development of anti-C agents have been closely investigated in the field of nephrology. The usefulness of some C products such as C5a and sC5b-9 for diagnostic and prognostic purposes remains controversial. On the other hand, decreased renal function is being observed in many patients with or without nephritis as a background factor in progressively aging societies. We therefore investigated whether renal function influenced the evaluation of various complement components and activation products. Methods To investigate the influence of renal function on evaluations of C3, C4, CH50, Ba, C5a and sC5b-9, 40 patients were retrospectively chosen from among 844 patients without active glomerulonephritis from 2009 to 2016. We measured plasma and serum levels of C3, C4, CH50, Ba, C5a and sC5b-9 using enzyme-linked immunosorbent assays and compared the findings with inulin clearance (Cin) as a marker of preserved renal function. Results Both plasma and serum levels of Ba correlated significantly with Cin, but other values did not. Compared with patients with Cin ≥ 60 or ≥ 30 mL/min/1.73 m2, plasma and serum levels of Ba were increased in patients with Cin decreased to < 60 or < 30 mL/min/1.73 m2, but levels of C5a and sC5b-9 were not. Conclusion The influence of renal function might need to be considered when evaluating Ba, but not C5a and sC5b-9, in plasma and serum samples from chronic kidney disease patients

    Therapeutic Potential of Stem Cells from Human Exfoliated Deciduous Teeth in Models of Acute Kidney Injury.

    No full text
    Acute kidney injury (AKI) is a critical condition associated with high mortality. However, the available treatments for AKI are limited. Stem cells from human exfoliated deciduous teeth (SHED) have recently gained attention as a novel source of stem cells. The purpose of this study was to clarify whether SHED have a therapeutic effect on AKI induced by ischemia-reperfusion injury.The left renal artery and vein of the mice were clamped for 20 min to induce ischemia. SHED, bone marrow derived mesenchymal stem cells (BMMSC) or phosphate-buffered saline (control) were administered into the subrenal capsule. To confirm the potency of SHED in vitro, H2O2 stimulation assays and scratch assays were performed.The serum creatinine and blood urea nitrogen levels of the SHED group were significantly lower than those of the control group, while BMMSC showed no therapeutic effect. Infiltration of macrophages and neutrophils in the kidney was significantly attenuated in mice treated with SHED. Cytokine levels (MIP-2, IL-1β, and MCP-1) in mice kidneys were significantly reduced in the SHED group. In in vitro experiments, SHED significantly decreased MCP-1 secretion in tubular epithelial cells (TEC) stimulated with H2O2. In addition, SHED promoted wound healing in the scratch assays, which was blunted by anti-HGF antibodies.SHED attenuated the levels of inflammatory cytokines and improved kidney function in AKI induced by IRI. SHED secreted factors reduced MCP-1 and increased HGF expression, which promoted wound healing. These results suggest that SHED might provide a novel stem cell resource, which can be applied for the treatment of ischemic kidney injury
    corecore