1,339 research outputs found

    Dilaton Stabilization and Inflation in the D-brane World

    Full text link
    We study the dilaton stabilization in the D-brane world in which a D-brane constitutes our universe. The dilaton can be stabilized due to the interplay between the D-brane tension and the negative scalar curvature of extra dimensions. Cosmic evolution of the dilaton is investigated with the obtained dilaton potential and it is found that inflation can be realized before the settlement of the dilaton.Comment: 10 pages, abstract correcte

    Bayesian Model Calibration and Sensitivity Analysis for Oscillating Biological Experiments

    Full text link
    Understanding the oscillating behaviors that govern organisms' internal biological processes requires interdisciplinary efforts combining both biological and computer experiments, as the latter can complement the former by simulating perturbed conditions with higher resolution. Harmonizing the two types of experiment, however, poses significant statistical challenges due to identifiability issues, numerical instability, and ill behavior in high dimension. This article devises a new Bayesian calibration framework for oscillating biochemical models. The proposed Bayesian model is estimated relying on an advanced Markov chain Monte Carlo (MCMC) technique which can efficiently infer the parameter values that match the simulated and observed oscillatory processes. Also proposed is an approach to sensitivity analysis based on the intervention posterior. This approach measures the influence of individual parameters on the target process by using the obtained MCMC samples as a computational tool. The proposed framework is illustrated with circadian oscillations observed in a filamentous fungus, Neurospora crassa.Comment: manuscript 33 pages, appendix 6 page

    Dark Matters in Axino Gravitino Cosmology

    Full text link
    It is suggested that the axino mass in the 1 MeV region and gravitino mass in the eV region can provide an axino lifetime of order of the time of photon decoupling. In this case, some undecayed axinos act like cold dark matters and some axino decay products (gravitinos and hot axions) act like hot dark matters at the time of galaxy formation.Comment: 9 pages, Late

    Inflation and Gauge Hierarchy in Randall-Sundrum Compactification

    Get PDF
    We obtain the general inflationary solutions for the slab of five-dimensional AdS spacetime where the fifth dimension is an orbifold S1/Z2S^1/Z_2 and two three-branes reside at its boundaries, of which the Randall-Sundrum model corresponds to the static limit. The investigation of the general solutions and their static limit reveals that the RS model recasts both the cosmological constant problem and the gauge hierarchy problem into the balancing problem of the bulk and the brane cosmological constants.Comment: 9 pages, revtex, minor changes and more references adde

    Polycyclic Aromatic Hydrocarbon Concentration Levels on the Korean Peninsula between 2006 and 2008

    Get PDF
    Concentrations of seven polycyclic aromatic hydrocarbon (PAH) compounds ) areas. The PAH values, when compared across seasons, tend to peak consistently during the winter (or spring) due to the active consumption of fossil fuels. The overall results of this study confirm that the pollution status of PAH compounds are clearly discernible not only between areas with different levels of anthropogenic activities, but also between periods with changes in environmental conditions

    Cold Nuclear Matter In Holographic QCD

    Full text link
    We study the Sakai-Sugimoto model of holographic QCD at zero temperature and finite chemical potential. We find that as the baryon chemical potential is increased above a critical value, there is a phase transition to a nuclear matter phase characterized by a condensate of instantons on the probe D-branes in the string theory dual. As a result of electrostatic interactions between the instantons, this condensate expands towards the UV when the chemical potential is increased, giving a holographic version of the expansion of the Fermi surface. We argue based on properties of instantons that the nuclear matter phase is necessarily inhomogeneous to arbitrarily high density. This suggests an explanation of the "chiral density wave" instability of the quark Fermi surface in large N_c QCD at asymptotically large chemical potential. We study properties of the nuclear matter phase as a function of chemical potential beyond the transition and argue in particular that the model can be used to make a semi-quantitative prediction of the binding energy per nucleon for nuclear matter in ordinary QCD.Comment: 31 pages, LaTeX, 1 figure, v2: some formulae corrected, qualitative results unchange

    Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory

    Get PDF
    Virus infections induce CD8+ T cell responses comprised of a large population of terminal effector cells and a smaller subset of long-lived memory cells. The transcription factors regulating the relative expansion versus the long-term survival potential of anti-viral CD8+ T cells are not completely understood. We identified ZBTB32 as a transcription factor that is transiently expressed in effector CD8+ T cells. After acute virus infection, CD8+ T cells deficient in ZBTB32 showed enhanced virus-specific CD8+ T cell responses, and generated increased numbers of virus-specific memory cells; in contrast, persistent expression of ZBTB32 suppressed memory cell formation. The dysregulation of CD8+ T cell responses in the absence of ZBTB32 was catastrophic, as Zbtb32-/- mice succumbed to a systemic viral infection and showed evidence of severe lung pathology. We found that ZBTB32 and Blimp-1 were co-expressed following CD8+ T cell activation, bound to each other, and cooperatively regulated Blimp-1 target genes Eomes and Cd27. These findings demonstrate that ZBTB32 is a key transcription factor in CD8+ effector T cells that is required for the balanced regulation of effector versus memory responses to infection

    Four-Dimensional Effective Supergravity and Soft Terms in M-Theory

    Get PDF
    We provide a simple macroscopic analysis of the four-dimensional effective supergravity of the Ho\v{r}ava-Witten M-theory which is expanded in powers of κ2/3/ρV1/3\kappa^{2/3}/\rho V^{1/3} and κ2/3ρ/V2/3\kappa^{2/3}\rho/V^{2/3} where κ2\kappa^2, VV and ρ\rho denote the eleven-dimensional gravitational coupling, the Calabi-Yau volume and the eleventh length respectively. Possible higher order terms in the K\"ahler potential are identified and matched with the heterotic string corrections. In the context of this M-theory expansion, we analyze the soft supersymmetry-breaking terms under the assumption that supersymmetry is spontaneously broken by the auxiliary components of the bulk moduli superfields. It is examined how the pattern of soft terms changes when one moves from the weakly coupled heterotic string limit to the M-theory limit.Comment: Latex, 23 pages, 3 figures. References are added and the discussion of the M-theory expansion parameters is enlarge

    Electromagnetic String Fluid in Rolling Tachyon

    Get PDF
    We study Born-Infeld type effective action for unstable D3-brane system including a tachyon and an Abelian gauge field, and find the rolling tachyon with constant electric and magnetic fields as the most general homogeneous solution. Tachyonic vacua are characterized by magnitudes of the electric and magnetic fields and the angle between them. Analysis of small fluctuations in this background shows that the obtained configuration may be interpreted as a fluid consisting of string-like objects carrying electric and magnetic fields. They are stretched along one direction and the rolling tachyon move in a perpendicular direction to the strings. Direction of the propagating waves coincides with that of strings with velocity equal to electric field.Comment: LaTeX, 18 pages, 1 figure, minor correction
    corecore