188,154 research outputs found

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation

    Demonstration of dispersive rarefaction shocks in hollow elliptical cylinder chains

    Full text link
    We report an experimental and numerical demonstration of dispersive rarefaction shocks (DRS) in a 3D-printed soft chain of hollow elliptical cylinders. We find that, in contrast to conventional nonlinear waves, these DRS have their lower amplitude components travel faster, while the higher amplitude ones propagate slower. This results in the backward-tilted shape of the front of the wave (the rarefaction segment) and the breakage of wave tails into a modulated waveform (the dispersive shock segment). Examining the DRS under various impact conditions, we find the counter-intuitive feature that the higher striker velocity causes the slower propagation of the DRS. These unique features can be useful for mitigating impact controllably and efficiently without relying on material damping or plasticity effects

    Newly found evidence of Sun-climate relationships

    Get PDF
    Solar radiation cycles drive climatic changes intercyclically. These interdecadal changes were detected as variations in solar total irradiances over the time period of recorded global surface-air-temperature (SAT) and have been restored utilizing Earth Radiation Budget Channel 10C measurements (1978-1990), Greenwich Observatory faculae data (1874-1975), and Taipei Observatory Active Region data (1964-1991). Analysis of the two separate events was carried out by treating each as a discrete time series determined by the length of each solar cycle. The results show that the global SAT responded closely to the input of solar cyclical activities, S, with a quantitative relation of T = 1.62 * S with a correlation coefficient of 0.61. This correlation peaks at 0.71 with a built-in time lag of 32 months in temperature response. Solar forcing in interannual time scale was also detected and the derived relationship of T = 0.17 * S with a correlation coefficient of 0.66 was observed. Our analysis shows derived climate sensitivities approximately fit the theoretical feedback slope, 4T(sup 3)

    Means for growing ribbon crystals without subjecting the crystals to thermal shock-induced strains

    Get PDF
    A susceptor particularly suited for use in growing a ribbon crystal employing edge defined film fed growth techniques is described. The susceptor includes a die through which a melt is drawn for forming a crystal ribbon. This is combined with a coolant delivery system characterized by a pair of jets for directing a stream of fluid coolant along a path extended to impinge on the susceptor in close proximity with the die in nonincident relation with the crystal being grown
    corecore