1,259 research outputs found

    IMPACT OF HEALTH INFORMATION ON DEMAND FOR FATS AND OILS IN JAPAN: COINTEGRATION AND A COMPLETE DEMAND SYSTEM APPROACH

    Get PDF
    This paper deals with the structural change for fats and oils in Japan focusing on the possible influence of health information. The newly developed fat and cholesterol information index appears to reflect the changing health information on fat and cholesterol much better than the ad-hoc cumulative index.Food Consumption/Nutrition/Food Safety,

    Label-free optical detection of single enzyme-reactant reactions and associated conformational changes

    Full text link
    Monitoring the kinetics and conformational dynamics of single enzymes is crucial in order to better understand their biological functions as these motions and structural dynamics are usually unsynchronized among the molecules. Detecting the enzyme-reactant interactions and associated conformational changes of the enzyme on a single molecule basis, however, remain as a challenge with established optical techniques due to the commonly required labeling of the reactants or the enzyme itself. The labeling process is usually non-trivial and the labels themselves might skew the physical properties of the enzyme. Here we demonstrate an optical, label-free method capable of observing enzymatic interactions and the associated conformational changes on the single molecule level. We monitor polymerase/DNA interactions via the strong near-field enhancement provided by plasmonic nanorods resonantly coupled to whispering gallery modes in microcavities. Specifically, we employ two different recognition schemes: one in which the kinetics of polymerase/DNA interactions are probed in the vicinity of DNA-functionalized nanorods, and the other in which these interactions are probed via the magnitude of conformational changes in the polymerase molecules immobilized on nanorods. In both approaches we find that low and high polymerase activities can be clearly discerned via their characteristic signal amplitude and signal length distributions. Furthermore, the thermodynamic study of the monitored interactions suggests the occurrence of DNA polymerization. This work constitutes a proof-of-concept study of enzymatic activities via plasmonically enhanced microcavities and establishes an alternative and label-free method capable of investigating structural changes in single molecules

    An Extended Star Formation History for the Galactic Center from Hubble Space Telescope/NICMOS Observations

    Full text link
    We present Hubble Space Telescope (HST) Near-Infrared Camera and Multiobject Spectrometer (NICMOS) observations as evidence that continuous star formation has created much of the central stellar cusp of the Galaxy. The data are the deepest ever obtained for a Galactic Center (GC) population, being >>50% complete for \mnk<19.3<19.3, or initial stellar masses ≳\gtrsim2 \Msun. We use Geneva and Padova stellar evolution models to produce synthetic luminosity functions for burst and continuous star formation scenarios, finding that the observations are fit best by continuous star formation at a rate that is consistent with the recent star formation activity that produced the three massive young clusters in the central 50 \pc. Further, it is not possible to fit the observations with ancient burst models, such as would be appropriate for an old population like that in Baade's Window or NGC6528

    HST/NICMOS Observations of Massive Stellar Clusters Near the Galactic Center

    Full text link
    We report Hubble Space Telescope (HST) Near-infrared Camera and Multi-object Spectrometer (NICMOS) observations of the Arches and Quintuplet clusters, two extraordinary young clusters near the Galactic Center. For the first time, we have identified main sequence stars in the Galactic Center with initial masses well below 10 Msun. We present the first determination of the initial mass function (IMF) for any population in the Galactic Center, finding an IMF slope which is significantly more positive (Gamma approx -0.65) than the average for young clusters elsewhere in the Galaxy (Gamma approx -1.4). The apparent turnoffs in the color-magnitude diagrams suggest cluster ages which are consistent with the ages implied by the mixture of spectral types in the clusters; we find tau(age) approx 2+/-1 Myr for the Arches cluster, and tau(age) approx 4+/-1 Myr for the Quintuplet. We estimate total cluster masses by adding the masses of observed stars down to the 50% completeness limit, and then extrapolating down to a lower mass cutoff of 1 Msun. Using this method, we find > 10^4 Msun for the total mass of the Arches cluster. Such a determination for the Quintuplet cluster is complicated by the double-valued mass-magnitude relationship for clusters with ages > 3 Myr. We find a lower limit of 6300 Msun for the total cluster mass, and suggest a best estimate of twice this value which accounts for the outlying members of the cluster. Both clusters have masses which place them as the two most massive clusters in the Galaxy.Comment: accepted by ApJ higher resolution versions of figures 1 and 2 can be found at: ftp://quintup.astro.ucla.edu/nicmos1

    Spatial correlations in chaotic nanoscale systems with spin-orbit coupling

    Full text link
    We investigate the statistical properties of wave functions in chaotic nanostructures with spin-orbit coupling (SOC), focussing in particular on spatial correlations of eigenfunctions. Numerical results from a microscopic model are compared with results from random matrix theory in the crossover from the gaussian orthogonal to the gaussian symplectic ensembles (with increasing SOC); one- and two-point distribution functions were computed to understand the properties of eigenfunctions in this crossover. It is found that correlations of wave function amplitudes are suppressed with SOC; nevertheless, eigenfunction correlations play a more important role in the two-point distribution function(s), compared to the case with vanishing SOC. Experimental consequences of our results are discussed.Comment: Submitted to PR

    Spin symmetry breaking in bilayer quantum Hall systems

    Full text link
    Based on the construction of generalized Halperin wave functions, we predict the possible existence of a large class of broken spin symmetry states in bilayer quantum Hall structures, generalizing the recently suggested canted antiferromgnetic phase to many fractional fillings. We develop the appropriate Chern-Simons theory, and establish explicitly that the low-lying neutral excitation is a Goldstone mode and that the charged excitations are bimerons with continuously tunable (through the canted antiferromagnetic order parameter) electric charge on the individual merons.Comment: 4 page

    Transport and Strong-Correlation Phenomena in Carbon Nanotube Quantum Dots in a Magnetic Field

    Full text link
    Transport through carbon nanotube (CNT) quantum dots (QDs) in a magnetic field is discussed. The evolution of the system from the ultraviolet to the infrared is analyzed; the strongly correlated (SC) states arising in the infrared are investigated. Experimental consequences of the physics are presented -- the SC states arising at various fillings are shown to be drastically different, with distinct signatures in the conductance and, in particular, the noise. Besides CNT QDs, our results are also relevant to double QD systems.Comment: 5 pages, 5 figure
    • …
    corecore