23 research outputs found
The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates
Background: Transposable elements (TEs) have played an important role in the diversification and enrichment of mammalian transcriptomes through various mechanisms such as exonization and intronization (the birth of new exons/introns from previously intronic/exonic sequences, respectively), and insertion into first and last exons. However, no extensive analysis has compared the effects of TEs on the transcriptomes of mammals, non-mammalian vertebrates and invertebrates. Results: We analyzed the influence of TEs on the transcriptomes of five species, three invertebrates and two non-mammalian vertebrates. Compared to previously analyzed mammals, there were lower levels of TE introduction into introns, significantly lower numbers of exonizations originating from TEs and a lower percentage of TE insertion within the first and last exons. Although the transcriptomes of vertebrates exhibit significant levels of exonization of TEs, only anecdotal cases were found in invertebrates. In vertebrates, as in mammals, the exonized TEs are mostly alternatively spliced, indicating that selective pressure maintains the original mRNA product generated from such genes. Conclusions: Exonization of TEs is widespread in mammals, less so in non-mammalian vertebrates, and very low in invertebrates. We assume that the exonization process depends on the length of introns. Vertebrates, unlike invertebrates, are characterized by long introns and short internal exons. Our results suggest that there is a direct link between the length of introns and exonization of TEs and that this process became more prevalent following the appearance of mammals
Recommended from our members
Overlapping Splicing Regulatory Motifs—Combinatorial Effects on Splicing
Regulation of splicing in eukaryotes occurs through the coordinated action of multiple splicing factors. Exons and introns contain numerous putative binding sites for splicing regulatory proteins. Regulation of splicing is presumably achieved by the combinatorial output of the binding of splicing factors to the corresponding binding sites. Although putative regulatory sites often overlap, no extensive study has examined whether overlapping regulatory sequences provide yet another dimension to splicing regulation. Here we analyzed experimentally-identified splicing regulatory sequences using a computational method based on the natural distribution of nucleotides and splicing regulatory sequences. We uncovered positive and negative interplay between overlapping regulatory sequences. Examination of these overlapping motifs revealed a unique spatial distribution, especially near splice donor sites of exons with weak splice donor sites. The positively selected overlapping splicing regulatory motifs were highly conserved among different species, implying functionality. Overall, these results suggest that overlap of two splicing regulatory binding sites is an evolutionary conserved widespread mechanism of splicing regulation. Finally, over-abundant motif overlaps were experimentally tested in a reporting minigene revealing that overlaps may facilitate a mode of splicing that did not occur in the presence of only one of the two regulatory sequences that comprise it
The Alternative Choice of Constitutive Exons throughout Evolution
Alternative cassette exons are known to originate from two processes
exonization of intronic sequences and exon shuffling. Herein, we suggest an
additional mechanism by which constitutively spliced exons become alternative
cassette exons during evolution. We compiled a dataset of orthologous exons
from human and mouse that are constitutively spliced in one species but
alternatively spliced in the other. Examination of these exons suggests that
the common ancestors were constitutively spliced. We show that relaxation of
the 59 splice site during evolution is one of the molecular mechanisms by which
exons shift from constitutive to alternative splicing. This shift is associated
with the fixation of exonic splicing regulatory sequences (ESRs) that are
essential for exon definition and control the inclusion level only after the
transition to alternative splicing. The effect of each ESR on splicing and the
combinatorial effects between two ESRs are conserved from fish to human. Our
results uncover an evolutionary pathway that increases transcriptome diversity
by shifting exons from constitutive to alternative splicin
Towards Alignment Independent Quantitative Assessment of Homology Detection
Identification of homologous proteins provides a basis for protein annotation. Sequence alignment tools reliably identify homologs sharing high sequence similarity. However, identification of homologs that share low sequence similarity remains a challenge. Lowering the cutoff value could enable the identification of diverged homologs, but also introduces numerous false hits. Methods are being continuously developed to minimize this problem. Estimation of the fraction of homologs in a set of protein alignments can help in the assessment and development of such methods, and provides the users with intuitive quantitative assessment of protein alignment results. Herein, we present a computational approach that estimates the amount of homologs in a set of protein pairs. The method requires a prevalent and detectable protein feature that is conserved between homologs. By analyzing the feature prevalence in a set of pairwise protein alignments, the method can estimate the number of homolog pairs in the set independently of the alignments' quality. Using the HomoloGene database as a standard of truth, we implemented this approach in a proteome-wide analysis. The results revealed that this approach, which is independent of the alignments themselves, works well for estimating the number of homologous proteins in a wide range of homology values. In summary, the presented method can accompany homology searches and method development, provides validation to search results, and allows tuning of tools and methods
Intronic Alus Influence Alternative Splicing
Examination of the human transcriptome reveals higher levels of RNA editing
than in any other organism tested to date. This is indicative of extensive
double-stranded RNA (dsRNA) formation within the human transcriptome. Most of
the editing sites are located in the primate-specific retrotransposed element
called Alu. A large fraction of Alus are found in intronic sequences, implying
extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these
intronic Alus on splicing of the flanking exons is largely unknown. Here, we
show that more Alus flank alternatively spliced exons than constitutively
spliced ones; this is especially notable for those exons that have changed
their mode of splicing from constitutive to alternative during human evolution.
This implies that Alu insertions may change the mode of splicing of the
flanking exons. Indeed, we demonstrate experimentally that two Alu elements
that were inserted into an intron in opposite orientation undergo base-pairing,
as evident by RNA editing, and affect the splicing patterns of a downstream
exon, shifting it from constitutive to alternative. Our results indicate the
importance of intronic Alus in influencing the splicing of flanking exons,
further emphasizing the role of Alus in shaping of the human transcriptom
Alu Exonization Events Reveal Features Required for Precise Recognition of Exons by the Splicing Machinery
Despite decades of research, the question of how the mRNA splicing machinery precisely identifies short exonic islands within the vast intronic oceans remains to a large extent obscure. In this study, we analyzed Alu exonization events, aiming to understand the requirements for correct selection of exons. Comparison of exonizing Alus to their non-exonizing counterparts is informative because Alus in these two groups have retained high sequence similarity but are perceived differently by the splicing machinery. We identified and characterized numerous features used by the splicing machinery to discriminate between Alu exons and their non-exonizing counterparts. Of these, the most novel is secondary structure: Alu exons in general and their 5′ splice sites (5′ss) in particular are characterized by decreased stability of local secondary structures with respect to their non-exonizing counterparts. We detected numerous further differences between Alu exons and their non-exonizing counterparts, among others in terms of exon–intron architecture and strength of splicing signals, enhancers, and silencers. Support vector machine analysis revealed that these features allow a high level of discrimination (AUC = 0.91) between exonizing and non-exonizing Alus. Moreover, the computationally derived probabilities of exonization significantly correlated with the biological inclusion level of the Alu exons, and the model could also be extended to general datasets of constitutive and alternative exons. This indicates that the features detected and explored in this study provide the basis not only for precise exon selection but also for the fine-tuned regulation thereof, manifested in cases of alternative splicing
Signal peptide is a conserved feature of homologous proteins.
<p>Homologous proteins of human/mouse, human/fruit fly, and human/C. elegans were extracted from HomoloGene triplets. The proportion of matching protein pairs, in which both proteins have or lack a signal peptide, was calculated for each pair of organisms (gray columns). For comparison, the expected proportions (black columns), is calculated under the assumption that signal peptide is not conserved between homologs, using the prevalence of proteins having signal peptides in each organism.</p