88 research outputs found

    Behavior-Based Outlier Detection for Network Access Control Systems

    Get PDF
    Network Access Control (NAC) systems manage the access of new devices into enterprise networks to prevent unauthorised devices from attacking network services. The main difficulty with this approach is that NAC cannot detect abnormal behaviour of devices connected to an enterprise network. These abnormal devices can be detected using outlier detection techniques. Existing outlier detection techniques focus on specific application domains such as fraud, event or system health monitoring. In this paper, we review attacks on Bring Your Own Device (BYOD) enterprise networks as well as existing clustering-based outlier detection algorithms along with their limitations. Importantly, existing techniques can detect outliers, but cannot detect where or which device is causing the abnormal behaviour. We develop a novel behaviour-based outlier detection technique which detects abnormal behaviour according to a device type profile. Based on data analysis with K-means clustering, we build device type profiles using Clustering-based Multivariate Gaussian Outlier Score (CMGOS) and filter out abnormal devices from the device type profile. The experimental results show the applicability of our approach as we can obtain a device type profile for five dell-netbooks, three iPads, two iPhone 3G, two iPhones 4G and Nokia Phones and detect outlying devices within the device type profile

    Frequency Noise Control of Heterogeneous Si/III-V Lasers

    Get PDF
    Narrow-linewidth lasers have many applications including optical telecommunication, laser spectroscopy, atomic clocks, and light detection and ranging. Conventionally, narrow linewidth lasers have been realized in the form of fiber-based or solid-state lasers. These lasers are bulky and relatively expensive, limiting their usage as bench-top systems in laboratory environments. Historically, semiconductor lasers, also known as laser diodes, have served applications where size and cost are important factors, including fiber optic communications. The linewidth of the semiconductor lasers, however, has been limited to the MHz-level, due to high loss in laser cavities and small size. Recently, reduction of the frequency fluctuations in the semiconductor lasers has been achieved, obtaining tens of kHz linewidth, using the heterogeneous Silicon/III-V platform with a new design strategy. In this design, the majority of the optical energy is stored in the low-loss high-Q silicon resonator away from the high-loss III-V active region, requiring the minimal gain from the active region to overcome the reduced modal loss. This work explores the new design strategy further, and demonstrates theoretically and experimentally that the strategy eliminates the frequency fluctuations arising from the amplitude-phase coupling by placing a relaxation resonance frequency at frequencies of a few hundred MHz. Consequently, it becomes possible to obtain a semiconductor laser device possessing sub-kHz quantum-limited linewidths at frequencies of a few GHz (the frequencies of interest in optical telecommunication). In addition to the frequency noise reduction, the strategy turns out to have the additional benefit of accomplishing a coherent and stable lasing operation, even under external reflections. Thus, the new design strategy has the potential to replace the costly, but currently indispensable external optical isolators, which have been traditionally used to maintain the consistent performance of semiconductor lasers in the presence of external reflection. This work paves the way for the design of narrow-linewidth and stable semiconductor lasers that can function without the use of the bulky and costly external components, such as external cavities or optical isolators.</p

    Learning to Optimize Domain Specific Normalization for Domain Generalization

    Full text link
    We propose a simple but effective multi-source domain generalization technique based on deep neural networks by incorporating optimized normalization layers that are specific to individual domains. Our approach employs multiple normalization methods while learning separate affine parameters per domain. For each domain, the activations are normalized by a weighted average of multiple normalization statistics. The normalization statistics are kept track of separately for each normalization type if necessary. Specifically, we employ batch and instance normalizations in our implementation to identify the best combination of these two normalization methods in each domain. The optimized normalization layers are effective to enhance the generalizability of the learned model. We demonstrate the state-of-the-art accuracy of our algorithm in the standard domain generalization benchmarks, as well as viability to further tasks such as multi-source domain adaptation and domain generalization in the presence of label noise

    Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses

    Get PDF
    AbstractType I interferons (IFNs-Ī±/Ī²) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1Ī± subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSVā€“nsp1 and LDVā€“nsp1 were auto-cleaved to produce the nsp1Ī± and nsp1Ī² subunits, EAVā€“nsp1 remained uncleaved. SHFVā€“nsp1 was initially predicted to be cleaved to generate three subunits (nsp1Ī±, nsp1Ī², and nsp1Ī³), but only two subunits were generated as SHFVā€“nsp1Ī±Ī² and SHFVā€“nsp1Ī³. The papain-like cysteine protease (PLP) 1Ī± motif in nsp1Ī± remained inactive for SHFV, and only the PLP1Ī² motif of nsp1Ī² was functional to generate SHFVā€“nsp1Ī³ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSVā€“nsp1Ī², LDVā€“nsp1Ī², EAVā€“nsp1, and SHFVā€“nsp1Ī³ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-ĪŗB mediated IFN promoter activities. Similar to PRRSVā€“nsp1Ī±, CBP degradation was evident in cells expressing LDVā€“nsp1Ī± and SHFVā€“nsp1Ī³, but no such degradation was observed for EAVā€“nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may differ from each other

    On-chip Integrated Differential Optical Microring Biosensing Platform Based on a Dual Laminar Flow Scheme

    Get PDF
    We propose an on-chip integrated differential optical silicon nitride microring biosensing platform which uses a dual laminar flow scheme. This platform reduces the fabrication complexity involved in the fabrication of the reference resonator

    Kicking the habit/semiconductor lasers without isolators

    Get PDF
    In this paper, we propose and demonstrate a solution to the problem of coherence degradation and collapse caused by the back reflection of laser power into the laser resonator. The problem is most onerous in semiconductor lasers (SCLs), which are normally coupled to optical fibers, and results in the fact that practically every commercial SCL has appended to it a Faraday-effect isolator that blocks most of the reflected optical power preventing it from entering the laser resonator. The isolator assembly is many times greater in volume and cost than the SCL itself. This problem has resisted a practical and economic solution despite decades of effort and remains the main obstacle to the emergence of a CMOS-compatible photonic integrated circuit technology. A simple solution to the problem is thus of major economic and technological importance. We propose a strategy aimed at weaning semiconductor lasers from their dependence on external isolators. Lasers with large internal Q-factors can tolerate large reflections, limited only by the achievable Q values, without coherence collapse. A laser design is demonstrated on the heterogeneous Si/III-V platform that can withstand 25 dB higher reflected power compared to commercial DFB lasers. Larger values of internal Qs, achievable by employing resonator material of lower losses and improved optical design, should further increase the isolation margin and thus obviate the need for isolators altogether

    Comprehensive genomic analyses associate UGT8 variants with musical ability in a Mongolian population

    Get PDF
    Background: Musical abilities such as recognising music and singing performance serve as means for communication and are instruments in sexual selection. Specific regions of the brain have been found to be activated by musical stimuli, but these have rarely been extended to the discovery of genes and molecules associated with musical ability. Methods: A total of 1008 individuals from 73 families were enrolled and a pitch-production accuracy test was applied to determine musical ability. To identify genetic loci and variants that contribute to musical ability, we conducted family-based linkage and association analyses, and incorporated the results with data from exome sequencing and array comparative genomic hybridisation analyses. Results: We found significant evidence of linkage at 4q23 with the nearest marker D4S2986 (LOD=3.1), whose supporting interval overlaps a previous study in Finnish families, and identified an intergenic single nucleotide polymorphism (SNP) (rs1251078,p=8.4Ɨ10āˆ’17)(rs1251078, p=8.4Ɨ10^{āˆ’17}) near UGT8, a gene highly expressed in the central nervous system and known to act in brain organisation. In addition, a non-synonymous SNP in UGT8 was revealed to be highly associated with musical ability (rs4148254,p=8.0Ɨ10āˆ’17)(rs4148254, p=8.0Ɨ10^{āˆ’17}), and a 6.2 kb copy number loss near UGT8 showed a plausible association with musical ability (p=2.9Ɨ10āˆ’6)(p=2.9Ɨ10^{āˆ’6}). Conclusions: This study provides new insight into the genetics of musical ability, exemplifying a methodology to assign functional significance to synonymous and non-coding alleles by integrating multiple experimental methods

    Genomic profile analysis of diffuse-type gastric cancers

    Get PDF
    Background: Stomach cancer is the third deadliest among all cancers worldwide. Although incidence of the intestinal-type gastric cancer has decreased, the incidence of diffuse-type is still increasing and its progression is notoriously aggressive. There is insufficient information on genome variations of diffuse-type gastric cancer because its cells are usually mixed with normal cells, and this low cellularity has made it difficult to analyze the genome. Results: We analyze whole genomes and corresponding exomes of diffuse-type gastric cancer, using matched tumor and normal samples from 14 diffuse-type and five intestinal-type gastric cancer patients. Somatic variations found in the diffuse-type gastric cancer are compared to those of the intestinal-type and to previously reported variants. We determine the average exonic somatic mutation rate of the two types. We find associated candidate driver genes, and identify seven novel somatic mutations in CDH1, which is a well-known gastric cancer-associated gene. Three-dimensional structure analysis of the mutated E-cadherin protein suggests that these new somatic mutations could cause significant functional perturbations of critical calcium-binding sites in the EC1-2 junction. Chromosomal instability analysis shows that the MDM2 gene is amplified. After thorough structural analysis, a novel fusion gene TSC2-RNF216 is identified, which may simultaneously disrupt tumor-suppressive pathways and activate tumorigenesis. Conclusions: We report the genomic profile of diffuse-type gastric cancers including new somatic variations, a novel fusion gene, and amplification and deletion of certain chromosomal regions that contain oncogenes and tumor suppressors.open121
    • ā€¦
    corecore