351 research outputs found

    Stabilization of isolated attosecond pulse by controlling the emission time of high-order harmonics

    Get PDF
    Features of an isolated attosecond pulse generated by three-color fields are investigated as a function of the time delays between different-frequency components. It is found that there is a window for the time delays in which the characteristics of an isolated attosecond pulse are relatively stable. By analyzing the variation of the driving field and the harmonic emission time with the time delays, the stability of the isolated attosecond pulse is well explained. This analysis shows that by confining the harmonic emission time in a half-cycle, the sensitivity of an isolated attosecond pulse to the shift of time delays can decrease, which is important to the ultrafast measurement with an isolated attosecond pulse.11Yscopu

    Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer\u27s disease

    Get PDF
    A promising new therapeutic target for the treatment of Alzheimer\u27s disease (AD) is the circadian system. Although patients with AD are known to have abnormal circadian rhythms and suffer sleep disturbances, the role of the molecular clock in regulating amyloid-beta (Aβ) pathology is still poorly understood. Here, we explored how the circadian repressors REV-ERBα and β affected Aβ clearance in mouse microglia. We discovered that, at Circadian time 4 (CT4), microglia expressed higher levels of the master clock protein BMAL1 and more rapidly phagocytosed fibrillary A

    Semimetallization of dielectrics in strong optical fields

    Get PDF
    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (similar to 1 V/angstrom) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.open11178sciescopu

    Ultrafast giant magnetic cooling effect in ferromagnetic Co/Pt multilayers

    Get PDF
    The magnetic cooling effect originates from a large change in entropy by the forced magnetization alignment, which has long been considered to be utilized as an alternative environment-friendly cooling technology compared to conventional refrigeration. However, an ultimate timescale of the magnetic cooling effect has never been studied yet. Here, we report that a giant magnetic cooling (up to 200 K) phenomenon exists in the Co/Pt nanomultilayers on a femtosecond timescale during the photoinduced demagnetization and remagnetization, where the disordered spins are more rapidly aligned, and thus magnetically cooled, by the external magnetic field via the lattice-spin interaction in the multilayer system. These findings were obtained by the extensive analysis of time-resolved magneto-optical responses with systematic variation of laser fluence as well as external field strength and direction. Ultrafast giant magnetic cooling observed in the present study can enable a new avenue to the realization of ultrafast magnetic devices.111Ysciescopu
    corecore