6,288 research outputs found

    The Light and Period Variations of the Eclipsing Binary AA Ursae Majoris

    Full text link
    We present new multiband CCD photometry for AA UMa made on 8 nights between January and March 2009; the RR light curves are the first ever compiled. Historical light curves, as well as ours, display partial eclipses and inverse O'Connell effects with Max I fainter than Max II. Among possible spot models, a cool spot on either of the component stars and its variability with time permit good light-curve representations for the system. A total of 194 eclipse timings over 81 yrs, including our five timings, were used for ephemeris computations. We found that the orbital period of the system has varied due to a periodic oscillation overlaid on an upward parabolic variation. The continuous period increase at a fractional rate of ++1.3ร—\times10โˆ’10^{-10} is consistent with that calculated from the W-D code and can be interpreted as a thermal mass transfer from the less to the more massive secondary star at a rate of 6.6ร—\times10โˆ’8^{-8} MโŠ™_\odot yrโˆ’1^{-1}. The periodic component is in satisfactory accord with a light-time effect due to an unseen companion with a period of 28.2 yrs, a semi-amplitude of 0.007 d, and a minimum mass of M3sinโกi3M_3 \sin i_3=0.25 MโŠ™M_\odot but this period variation could also arise from magnetic activity.Comment: 23 pages, including 5 figures and 8 tables, accepted for publication in PAS

    Stability of a Jensen type equation in the space of generalized functions

    Get PDF
    AbstractWe reformulate and solve the stability problem of a Jensen type functional equation3f(x+y+z3)+f(x)+f(y)+f(z)โˆ’2f(x+y2)โˆ’2f(y+z2)โˆ’2f(z+x2)=0, in the spaces of some generalized functions such as tempered distributions and Fourier hyperfunctions

    EFFECT OF SEAT TUBE ANGLE ON THE WORK EFFICIENCY OF LOWER LIMB MUSCLES DURING CYCLING

    Get PDF
    The effect of seat tube angle (STA) on work efficiency at lower limb muscle was evaluated during a pedal rotation using inverse dynamic model. Since the target is not professional cyclist, the various seat tube angles of 78, 68, 58 and 48 degrees was investigated. Cycling simulation was performed at 250W and 60rpm. The works of individual muscle of lower limb and the total work was estimated. The result shows that the total work of single leg at seat tube angles of 78, 68, 58 and 48 degrees were 168.1(J), 167.9(J), 168.9(J) and 170.8(J) respectively. In conclusion, the exertion of lower limb for delivering same amount of work to the crank is the smallest at around 72 degree of seat tube angle which mean work efficiency of lower limb is the greates

    Trapping a Free-propagating Single-photon into an Atomic Ensemble as a Quantum Stationary Light Pulse

    Full text link
    Efficient photon-photon interaction is one of the key elements for realizing quantum information processing. The interaction, however, must often be mediated through an atomic medium due to the bosonic nature of photons, and the interaction time, which is critically linked to the efficiency, depends on the properties of the atom-photon interaction. While the electromagnetically induced transparency effect does offer the possibility of photonic quantum memory, it does not enhance the interaction time as it fully maps the photonic state to an atomic state. The stationary light pulse (SLP) effect, on the contrary, traps the photonic state inside an atomic medium with zero group velocity, opening up the possibility of the enhanced interaction time. In this work, we report the first experimental demonstration of trapping a free-propagating single-photon into a cold atomic ensemble via the quantum SLP (QSLP) process. We conclusively show that the quantum properties of the single-photon state are preserved well during the QSLP process. Our work paves the way to new approaches for efficient photon-photon interactions, exotic photonic states, and many-body simulations in photonic systems

    Association between polymorphisms of arachidonate 12-lipoxygenase (ALOX12) and schizophrenia in a Korean population

    Get PDF
    Arachidonic acid (AA), an essential polyunsaturated fatty acid, is one of the major components of neural membranes, which show an altered phospholipid composition in schizophrenia. Arachidonate 12-lipoxygenase (ALOX12), an important enzyme, metabolizes AA to 12-HPETE, which affects catecholamine synthesis. However, research has yet to show the genetic association between ALOX12 and schizophrenia. Therefore, we investigated single nucleotide polymorphisms (SNP) of the ALOX12 gene in schizophrenia, recruiting patients with schizophrenia (n = 289) and normal controls (n = 306) from a Korean population. We selected three SNPs (rs1126667, rs434473, and rs1042357) of the ALOX12 gene and genotyped them by direct sequencing. We reviewed the schizophrenic patients' medical records and assessed them clinically using the Brief Psychiatric Rating Scale (BPRS), the Scale for the Assessment of Negative Symptoms (SANS), and the Operational Criteria Checklist (OPCRIT). Then we statistically analyzed the genetic associations between the SNPs and schizophrenia, finding a genetic association between both rs1126667 and rs1042357 and schizophrenia, in the recessive model (p = 0.015 and 0.015, respectively). We also found an association between rs434473 and negative symptoms, defined through a factor analysis of the OPCRIT data (p = 0.040). Consequently, we suggest that SNPs of the ALOX12 gene might be associated with schizophrenia and negative symptoms in this Korean population. These weak positives require additional study

    Electric field control of nonvolatile four-state magnetization at room temperature

    Get PDF
    We find the realization of large converse magnetoelectric (ME) effects at room temperature in a multiferroic hexaferrite Ba0.52_{0.52}Sr2.48_{2.48}Co2_{2}Fe24_{24}O41_{41} single crystal, in which rapid change of electric polarization in low magnetic fields (about 5 mT) is coined to a large ME susceptibility of 3200 ps/m. The modulation of magnetization then reaches up to 0.62 ฮผ\muB_{B}/f.u. in an electric field of 1.14 MV/m. We find further that four ME states induced by different ME poling exhibit unique, nonvolatile magnetization versus electric field curves, which can be approximately described by an effective free energy with a distinct set of ME coefficients
    • โ€ฆ
    corecore