18 research outputs found

    Price volatility and risk management of oil and gas companies: Evidence from oil and gas project finance deals

    Get PDF
    We investigate how the oil and gas project companies' decisions to hedge the risk of future prices of oil and gas respond to the changes in the price volatility of oil and gas, especially the role of the exposure of the sponsor company's stock returns to the risk of oil and gas prices. With a sample of 328 loans made to oil and gas development projects in 30 countries during 1996–2011 period, we find that the oil (or gas) price volatility increases the oil (or gas) project company's hedging likelihood, especially to a greater extent for the case in which the sponsor company's oil (or gas) exposure is smaller. Our findings suggest that the sponsor company's willingness to reduce its exposure to the risk of oil and gas prices increases the likelihood that the subsidiary project company will hedge the risk of future prices of oil and gas

    Feasibility experiments of seismic concrete block walls without joint mortar

    Get PDF
    The authors developed two types of block systems consisting only of main block and key block without joint mortar in consideration of seismic performance and workability. Two types of block systems have different key block shapes: One is the peanuts shape and the other is the dumbbell shape. In this study, the proposed two types of block walls as well as a typical block wall were experimentally investigated to evaluate the seismic performance. In the tests, full-scale, single-story specimens were tested under static cyclic in-plane loading, and failure patterns and cracks were carefully observed. In this paper, the loading bearing capacity, energy dissipation capacity and reuse ratio of block walls are discussed in detail. As a result, the deformability, energy absorption capacity and reuse ratio of the proposed block systems were considerably higher than those of typical block system

    Foot Gesture Recognition Using High-Compression Radar Signature Image and Deep Learning

    Get PDF
    Recently, Doppler radar‐based foot gesture recognition has attracted attention as a hands-free tool. Doppler radar‐based recognition for various foot gestures is still very challenging. So far, no studies have yet dealt deeply with recognition of various foot gestures based on Doppler radar and a deep learning model. In this paper, we propose a method of foot gesture recognition using a new high‐compression radar signature image and deep learning. By means of a deep learning AlexNet model, a new high‐compression radar signature is created by extracting dominant features via Singular Value Decomposition (SVD) processing; four different foot gestures including kicking, swinging, sliding, and tapping are recognized. Instead of using an original radar signature, the proposed method improves the memory efficiency required for deep learning training by using a high-compression radar signature. Original and reconstructed radar images with high compression values of 90%, 95%, and 99% were applied for the deep learning AlexNet model. As experimental results, movements of all four different foot gestures and of a rolling baseball were recognized with an accuracy of approximately 98.64%. In the future, due to the radar’s inherent robustness to the surrounding environment, this foot gesture recognition sensor using Doppler radar and deep learning will be widely useful in future automotive and smart home industry fields. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).1

    A Novel DFT-Based DOA Estimation by a Virtual Array Extension Using Simple Multiplications for FMCW Radar

    No full text
    We propose a novel discrete Fourier transform (DFT)-based direction of arrival (DOA) estimation by a virtual array extension using simple multiplications for frequency modulated continuous wave (FMCW) radar. DFT-based DOA estimation is usually employed in radar systems because it provides the advantage of low complexity for real-time signal processing. In order to enhance the resolution of DOA estimation or to decrease the missing detection probability, it is essential to have a considerable number of channel signals. However, due to constraints of space and cost, it is not easy to increase the number of channel signals. In order to address this issue, we increase the number of effective channel signals by generating virtual channel signals using simple multiplications of the given channel signals. The increase in channel signals allows the proposed scheme to detect DOA more accurately than the conventional scheme while using the same number of channel signals. Simulation results show that the proposed scheme achieves improved DOA estimation compared to the conventional DFT-based method. Furthermore, the effectiveness of the proposed scheme in a practical environment is verified through the experiment

    A Novel DFT-Based DOA Estimation by a Virtual Array Extension Using Simple Multiplications for FMCW Radar

    Get PDF
    We propose a novel discrete Fourier transform (DFT)-based direction of arrival (DOA) estimation by a virtual array extension using simple multiplications for frequency modulated continuous wave (FMCW) radar. DFT-based DOA estimation is usually employed in radar systems because it provides the advantage of low complexity for real-time signal processing. In order to enhance the resolution of DOA estimation or to decrease the missing detection probability, it is essential to have a considerable number of channel signals. However, due to constraints of space and cost, it is not easy to increase the number of channel signals. In order to address this issue, we increase the number of effective channel signals by generating virtual channel signals using simple multiplications of the given channel signals. The increase in channel signals allows the proposed scheme to detect DOA more accurately than the conventional scheme while using the same number of channel signals. Simulation results show that the proposed scheme achieves improved DOA estimation compared to the conventional DFT-based method. Furthermore, the effectiveness of the proposed scheme in a practical environment is verified through the experiment

    Low-Complexity-Based RD-MUSIC with Extrapolation for Joint TOA and DOA at Automotive FMCW Radar Systems

    Get PDF
    Low-complexity-based reduced-dimension–multiple-signal classification (RD-MUSIC) is proposed with extrapolation for joint time delay of arrivals (TOA) and direction of arrivals (DOA) at automotive frequency-modulated continuous-wave (FMCW) radar systems. When a vehicle is driving on the road, the automotive FMCW radar can estimate the position of multiple other vehicles, because it can estimate multiple parameters, such as TOA and DOA. Over time, the requirement of the accuracy and resolution parameters of automotive FMCW radar is increasing. To accurately estimate the parameters of multiple vehicles, such as range and angle, it is difficult to use a low-resolution algorithm, such as the two-dimensional fast Fourier transform. To improve parameter estimation performance, high-resolution algorithms, such as the 2D-MUSIC, are required. However, the conventional high-resolution methods have a high complexity and, thus, are not applicable to a real-time radar system for a vehicle. Therefore, in this work, a low-complexity RD-MUSIC with extrapolation algorithm is proposed to have a resolution similar to that of a high-resolution algorithm to estimate the position of other vehicles. Compared with conventional low complexity high resolution, in experimental results, the proposed method had better performance

    Super-Resolution-Based DOA Estimation with Wide Array Distance and Extrapolation for Vital FMCW Radar

    No full text
    This paper proposes a super-resolution-based direction-of-arrivals (DOA) estimation with wide array distance and extrapolation for vital frequency-modulated continuous-wave (FMCW) radar. Most super-resolution algorithms employ the distance between adjacent arrays of half a wavelength, i.e., λ/2. Meanwhile, in the case of narrow field of view of FMCW radar, the resolution of the angle is maintained by increasing the spacing between the arrays even if the number of arrays decreases. In order to employ these characteristics of array spacing and resolution, the proposed algorithm confirms whether or not to use the case where the distance between the adjacent arrays is greater than λ/2. In the case of an array distance >λ/2, a super-resolution algorithm is performed to obtain the enhanced DOA resolution. Moreover, the proposed algorithm virtually generates data between antennae by using extrapolation in order to further improve the performance of the resolution. The simulation results show that the proposed algorithm achieves the results of root-mean-square error similar to conventional super-resolution algorithms while maintaining low complexity. In order to further verify the performance of the proposed estimation algorithm, we demonstrate its employment in practice: experiments in a chamber room and an indoor room were conducted. © 2020, The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved.1
    corecore