3 research outputs found

    Characterization of agonist-induced endothelium-dependent vasodilatory responses in the vascular bed of the equine digit

    No full text
    The role of endothelium-derived relaxing factors was studied in the regulation of vascular responses in the Krebs perfused equine isolated digit. Perfusion pressure was recorded in response to bolus doses of 5-hydroxytryptamine (6 nmol) alone or co-administered with carbachol (CCh; 0.2 mu mol), bradykinin (BK; 0.2 nmol), substance P (SP; 0.2 nmol) or sodium nitroprusside (SNP; 0.2 mu mol). N-omega-Nitro-L-Arginine methyl ester hydrochloride (L-NAME; 300 mu M) caused partial but significant inhibition of CCh-induced vasodilatory response, whereas BK and SP-induced responses were resistant to L-NAME. High potassium (K+, 30 mM) and the cytochrome P-450 (CYP) epoxygenase inhibitor, clotrimazole (10 mu M) plus L-NAME (100 mu M), completely abolished the CCh, BK and SP-induced vasodilatory responses, whereas the response to SNP was unaffected. In contrast, the L-NAME-resistant proportion of CCh, BK and SP-induced vasodilatory response was not inhibited by the highly selective CYP2C9 inhibitor, sulphaphenazole (10 mu M). The cyclo-oxygenase inhibitor, ibuprofen (10 mu M) did not affect the CCh, BK and SP-induced responses. These data demonstrate that CCh, BK and SP-induced relaxation in the equine digit involve a combination of the NO and endothelium-derived hyperpolarizing factor (EDHF) pathways. These results do not support the evidence for the involvement of CYP-derived epoxyeicosatrienoic acids and the exact nature of EDHF in the equine digit remains to be established

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore