1,418 research outputs found

    The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex

    Get PDF
    The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain

    Theory of the cold collision frequency shift in 1S--2S spectroscopy of Bose-Einstein-condensed and non-condensed hydrogen

    Full text link
    We show that a correct formulation of the cold collision frequency shift for two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen is consistent with experimental data. Our treatment includes transport and inhomogeneity into the theory of a non-condensed gas, which causes substantial changes in the cold collision frequency shift for the ordinary thermal gas, as a result of the very high frequency (3.9kHz) of transverse trap mode. For the condensed gas, we find substantial corrections arise from the inclusion of quasiparticles, whose number is very large because of the very low frequency (10.2Hz) of the longitudinal trap mode. These two effects together account for the apparent absence of a "factor of two" between the two possibilities. Our treatment considers only the Doppler-free measurements, but could be extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we predict a characteristic "foot" extending into higher detunings than can arise from the condensate alone, as a result of a correct treatment of the statistics of thermal quasiparticles.Comment: 16 page J Phys B format plus 6 postscript figure

    Characterization of elemental ratios and oxidative ratio of horticultural peat

    Get PDF
    peer-reviewedPeatlands occupy 20% of the land area of Ireland and store over half of soil carbon stocks. Over 80% of these peatlands have been disturbed by human activity such as drainage for peat extraction, afforestation and agriculture. In this study, peat samples were collected from 12 horticultural peat extraction sites in the Irish midlands. The carbon (C), nitrogen (N), hydrogen, and sulphur content were determined, and from these the carbon oxidation state (Cox) and oxidative ratio (OR) were calculated. The carbon oxidation ratio reflects organic matter synthesis and degradation, and is thus an important parameter in understanding terrestrial carbon cycling, whilst OR represents the molar ratio of oxygen (O2) and carbon dioxide (CO2) fluxes associated with net ecosystem exchange. Elemental concentrations and ratios were typical for Irish horticultural peat (e.g. carbon concentrations 54 – 57%), though showed site to site variability. Cox and OR values varied between -0.22 and -0.11, and 1.04 and 1.07 respectively and were comparable to United Kingdom peat soils. All values for OR were lower than 1.1, the value commonly used in global CO2 partitioning studies. Further research should investigate OR values in peatland which has not been studied to date. Across all sites, measures of increased decomposition (i.e. C/N ratios) significantly correlated with increasing OR reflecting more reduced organic matter. This study provides data in temperate peat soils that increases the coverage of Cox and OR values and will inform global CO2 partitioning studies

    Ultracold Neutral Plasmas

    Full text link
    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach 101110^{11} cm−3^{-3}. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr+^+ 2S_1/2−>2P_1/2{^2S\_{1/2}} -> {^2P\_{1/2}} transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Photoassociative spectroscopy at long range in ultracold strontium

    Get PDF
    We report photoassociative spectroscopy of 88^{88}Sr2_2 in a magneto-optical trap operating on the 1S0→3P1{^1S_0}\to{^3P_1} intercombination line at 689 nm. Photoassociative transitions are driven with a laser red-detuned by 600-2400 MHz from the 1S0→1P1{^1S_0}\to{^1P_1} atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the 1P1{^1P_1} atomic lifetime (τ=5.22±0.03\tau=5.22 \pm 0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.Comment: 4 pages, 4 figures, submitte

    Evolution of Ultracold, Neutral Plasmas

    Get PDF
    We present the first large-scale simulations of an ultracold, neutral plasma, produced by photoionization of laser-cooled xenon atoms, from creation to initial expansion, using classical molecular dynamics methods with open boundary conditions. We reproduce many of the experimental findings such as the trapping efficiency of electrons with increased ion number, a minimum electron temperature achieved on approach to the photoionization threshold, and recombination into Rydberg states of anomalously-low principal quantum number. In addition, many of these effects establish themselves very early in the plasma evolution (∌\sim ns) before present experimental observations begin.Comment: 4 pages, 3 figures, submitted to PR

    Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr

    Get PDF
    We report the use of photoassociative spectroscopy to determine the ground state s-wave scattering lengths for the main bosonic isotopes of strontium, 86Sr and 88Sr. Photoassociative transitions are driven with a laser red-detuned by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the transition amplitude for 86Sr at -494+/-5 GHz allows us to determine the scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of -1a0 < a88 < 13a0 for 88Sr.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Parallel TREE code for two-component ultracold plasma analysis

    Full text link
    The TREE method has been widely used for long-range interaction {\it N}-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies
    • 

    corecore