28 research outputs found

    GaAsP Nanowires Grown by Aerotaxy

    Get PDF
    We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires

    Photon Upconversion in Heavily Doped Semiconductors

    No full text
    In this thesis the luminescence properties of highly doped semiconductors are studied with focus on degenerately n-doped InP. It is demonstrated how photoluminescence measurements on degenerately doped semiconductors allow an estimation of the doping concentration without need for electrical contacts. The degenerate doping can furthermore reveal the conduction band structure for energies higher than the bandgap, which is exploited to experimentally support the existence of a theoretically predicted second conduction band minimum in wurtzite InP. Excitation energy dependence measurements reveal band-to-band absorption for photon energies much lower than the Fermi energy. That absorption causes not only downconverted photoluminescence with photon energies lower than the excitation energy, but also upconverted photoluminescence with photon energies higher than the absorbed laser photon. From the results of the detailed study of this novel upconversion mechanism in degenerately n-doped InP nanowires and bulk InP we propose the following explanation: An elevated electron gas temperature in degenerately doped semiconductors allows absorption of photon with energies much lower than the Fermi energy. Band-to-band absorption of photons with energies lower than the Fermi energy excites holes with k-values lower than kF and scattering of the photexcited holes to higher k-values allows k-conserving radiative recombinations with photon energies higher than the energy of the absorbed photon. Similar upconversion luminescence is observed for degenerately n-doped bulk GaAs and degenerately p-doped GaAs nanowires, which suggest that similar photon upconversion could be observed in many degenerately doped direct band semiconductors. The three most important findings about degenerately doped direct band semiconductors are. There is significant photon upconversion for excitation energies between Eg and EF. The charge carrier recombination rate is higher than, or comparable to the scattering rate of the minority carriers. And, the radiative recombination is strongly dominated by k-conserving vertical transitions in contrast to the common assumption of relaxation of the k-selection rule in degenerately doped material

    Diffusion length measurements in axial and radial heterostructured nanowires using cathodoluminescence

    No full text
    We have measured the ambipolar diffusion lengths in nanowires with GaAs and AlGaAs core material using cathodoluminescence imaging. This was done by combining III-V semiconductor materials with different bandgaps in single nanowires. We show that it is possible to record intensity profiles of the emission from segments of lower bandgap material positioned along the nanowire length and in this way gain an insight on important carrier transport properties of the nanowire core material. We present diffusion data for GaAs and AlGaAs nanowire core material in different radially and axially heterostructured nanowires and show that the diffusion of carriers is greatly increased by capping the nanowires with a higher-bandgap material. In addition, we show how a decoupling of the radial and axial growth during particle-seeded growth is necessary in order to reach long diffusion lengths along the core of axially heterostructured nanowires. In addition, for ternary compounds (InGaAs and AlGaAs), we observe compositional differences for radial and axial nanowire growth. (C) 2010 Elsevier B.V. All rights reserved

    In situ etching for control over axial and radial III-V nanowire growth rates using HBr.

    No full text
    We report on the influence of hydrogen bromide (HBr) in situ etching on the growth of InP, GaP and GaAs nanowires. We find that HBr can be used to impede undesired radial growth during axial growth for all three material systems. The use of HBr opens a window for optimizing the growth parameters with respect to the materials' quality rather than only their morphology. Transmission electron microscopy (TEM) characterization reveals a partial transition from a wurtzite crystal structure to a zincblende upon the use of HBr during growth. For InP, defect-related luminescence due to parasitic radial growth is removed by use of HBr. For GaP, the etching with HBr reduced the defect-related luminescence, but no change in peak emission energy was observed. For GaAs, the HBr etching resulted in a shift to lower photon emission energies due to a shift in the crystal structure, which reduced the wurtzite segments

    Photon upconversion in degenerately sulfur doped InP nanowires.

    No full text
    Radiative recombination in degenerately n-doped InP nanowires is studied for excitation above and below the Fermi energy of the electron gas, using photoluminescence. Laser-induced electron heating is observed, which allows absorption below the Fermi energy. We observe photon upconversion where photo-excited holes recombine with high |k| electrons. This can be attributed to hole scattering to high |k|-values, and the temperature dependence of this process is measured. We show that hole relaxation via phonon scattering can be observed in continuous wave excitation luminescence measurements

    Fabrication and characterization of AlP-GaP core-shell nanowires

    No full text
    We report on the particle assisted synthesis of core-shell AlP-GaP nanowires by use of metal-organic vapor phase epitaxy. The core-shell approach is chosen such as to stabilize the AlP which is highly sensitive to water. The nanowires were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. These nanowires have an indirect band-gap and form a type II staggered heterojunction. By designed capping of the AlP cores by GaP, we find the nanowires to be stable for more than a year. (C) 2011 Elsevier B.V. All rights reserved

    Calculation of hole concentrations in Zn doped GaAs nanowires

    No full text
    We have previously demonstrated that we can grow p-type GaAs nanowires using Zn doping during gold catalyzed growth with aerotaxy. In this investigation, we show how to calculate the hole concentrations in such nanowires. We base the calculations on the Zhang–Northrup defect formation energy. Using density functional theory, we calculate the energy of the defect, a Zn atom on a Ga site, using a supercell approach. The chemical potentials of Zn and Ga in the liquid catalyst particle are calculated from a thermodynamically assessed database including Au, Zn, Ga, and As. These quantities together with the chemical potential of the carriers enable us to calculate the hole concentration in the nanowires self-consistently. We validate our theoretical results against aerotaxy grown GaAs nanowires where we have varied the hole concentration by varying the Zn/Ga ratio in the aerotaxy growth

    Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires.

    No full text
    Measuring lifetime of photogenerated charges in semiconductor nanowires (NW) is important for understanding light-induced processes in these materials and is relevant for their photovoltaic and photodetector applications. In this paper, we investigate the dynamics of photogenerated charge carriers in a series of as-grown InP NW with different levels of sulfur (S) doping. We observe that photoluminescence (PL) decay time as well as integrated PL intensity decreases with increasing S doping. We attribute these observations to hole trapping with the trap density increased due to S-doping level followed by nonradiative recombination of trapped charges. This assignment is proven by observation of the trap saturation in three independent experiments: via excitation power and repetition rate PL lifetime dependencies and by PL pump-probe experiment

    Semiconductor-Oxide Heterostructured Nanowires Using Postgrowth Oxidation.

    No full text
    Semiconductor-oxide heterointerfaces have several electron volts high-charge carrier potential barriers, which may enable devices utilizing quantum confinement at room temperature. While a single heterointerface is easily formed by oxide deposition on a crystalline semiconductor, as in MOS transistors, the amorphous structure of most oxides inhibits epitaxy of a second semiconductor layer. Here, we overcome this limitation by separating epitaxy from oxidation, using postgrowth oxidation of AlP segments to create axial and core-shell semiconductor-oxide heterostructured nanowires. Complete epitaxial AlP-InP nanowire structures were first grown in an oxygen-free environment. Subsequent exposure to air converted the AlP segments into amorphous aluminum oxide segments, leaving isolated InP segments in an oxide matrix. InP quantum dots formed on the nanowire sidewalls exhibit room temperature photoluminescence with small line widths (down to 15 meV) and high intensity. This optical performance, together with the control of heterostructure segment length, diameter, and position, opens up for optoelectrical applications at room temperature
    corecore