15 research outputs found
Demineralized bone matrix-induced ectopic bone formation in rats: in vivo study with follow-up by magnetic resonance imaging, magnetic resonance angiography, and dual-energy X-ray absorptiometry.
Contains fulltext :
57929.pdf (publisher's version ) (Open Access)The aim of this study was to further explore the use of magnetic resonance imaging (MRI), magnetic resonance angiography (MRA), and dual-energy X-ray absorptiometry (DEXA) to assess bone formation and blood circulation in a pedicled bone graft substitute. In 14 Wistar rats, initially 10 weeks old, heterogeneous demineralized femur bone matrix implants were wrapped in pedicled adductor thigh muscle flaps. One rat died after surgery. Subsequently, bone formation and maintenance of blood vessel functionality were evaluated in six rats 6 weeks postimplantation by means of in vivo MRI/MRA and postmortem histomorphometry. The other seven rats were left for 12 weeks, whereafter bone formation was evaluated by in vivo DEXA and postmortem histomorphometry. The results demonstrated that after 6 weeks bone formation was present in four of six animals, quantified as 42 (+/-35)% and 25 (+/-19)% by means of MRI and histomorphometry, respectively. MRA was able to show patency of the pedicles of these four rats only, which suggests that the lack of blood supply in the other two rats is the cause of the failure to form bone. In the 12-week group, histology showed increased bone formation without signs of osteolysis, which was quantified histomorphometrically to be as high as 48 (+/-15)%. DEXA failed to show bone formation. It is concluded that in vivo MRI proved to be a reliable method for monitoring ectopic bone formation in a rat model, whereas in vivo DEXA was unable to detect the implants. Furthermore, in vivo MRA proved to be a useful technique for studying the circulation of muscle flaps in this animal model
The stability of the femoral component of a minimal invasive total hip replacement system.
Item does not contain fulltextIn this study, the initial stability of the femoral component of a minimal invasive total hip replacement was biomechanically evaluated during simulated normal walking and chair rising. A 20 mm diameter canal was created in the femoral necks of five fresh frozen human cadaver bones and the femoral heads were resected at the smallest cross-sectional area of the neck. The relatively short, polished, taper-shaped prostheses were cemented centrally in this canal according to a standardized procedure. A servohydraulic testing machine was used to apply dynamic loads to the prosthetic head. Radiostereophotogrammetric analysis was used to measure rotations and translations between the prosthesis and bone. In addition, the reconstructions were loaded until failure in a static, displacement-controlled test. During the dynamic experiments, the femoral necks did not fail and no macroscopical damage was detected. Maximal values were found for normal walking with a mean rotation of about 0.2 degrees and a mean translation of about 120 microm. These motions stabilized during testing. The mean static failure load was 4714 N. The results obtained in this study are promising and warrant further development of this type of minimal invasive hip prosthesis