55 research outputs found

    Synthesis of high molecular weight poly(p-benzamide)s

    Get PDF
    The polymerization of aromatic para-amino acid ester derivatives was studied using model compounds. Mechanistic and kinetic experiments led to the discovery of some side reactions. Finally, high molecular weight poly(p-benzamide)s were synthesized and characterized. The use of highly reactive pentafluorophenol ester lead to polymers up to molecular weights of around 50 000 Da. Poly(benzamides) carrying both N-alkyl or N-benzyl groups on the amine could be polymerized to high molecular weight

    End Capping Ring-Opening Olefin Metathesis Polymerization Polymers with Vinyl Lactones

    Get PDF
    The selective placement of a functional group at the chain end of a ring-opening metathesis polymer using ruthenium carbene initiators has been a significant limitation. Here we demonstrate a highly effective and facile end-capping technique for ROMP with living ruthenium carbene chain ends using single-turnover olefin metathesis substrates. Vinylene carbonate and 3H-furanone are introduced as functionalization and termination agents for the ruthenium-initiated ring-opening metathesis polymerization. This leads directly to the formation of functional polymer end groups without further chemical transformation steps. Aldehyde and carboxylic acid end groups can be introduced by this new method which involves the decomposition of acyl carbenes to ruthenium carbides. The high degrees of chain-end functionality obtained are supported by ^1H NMR spectroscopy, MALDI-ToF mass spectrometry, and end-group derivatization

    Transient anions of cis- and trans-cyclooctene studied by electron-impact spectroscopy

    Get PDF
    The effect which deformation of the double bond in trans-cyclooctene (TCO), compared to cis-cyclooctene (CCO), has on its negative ion – and indirectly on the π* virtual orbital – was studied by electron-impact spectroscopy. Differential elastic and vibrational excitation cross sections were measured at a scattering angle of θ = 135°. The vertical attachment energy (VAE) derived from the vibrational excitation spectra is 1.87 eV in TCO, only 0.09 eV lower than in the unstrained CCO, 1.96 eV. The substantial deformation of the C[double bond, length as m-dash]C bond in TCO thus stabilizes its transient negative ion by a surprisingly small amount and this effect is ascribed in part to the Pauli (steric) destabilization of the TCO π* orbital by the alkyl chain facing the π* lobes. An interesting effect is observed in the elastic cross section which is about 45% larger for TCO at low energies ([similar]0.4 eV), despite the similar geometrical size of the two molecules. Ramsauer–Townsend minima are observed in the elastic cross section at 0.13 and 0.12 eV for CCO and TCO, respectively. Implications of the findings on enhancement of the dienophile capacity of TCO are discussed

    Functional metathesis catalyst through ring closing enyne metathesis: one pot protocol for living heterotelechelic polymers

    Get PDF
    Enyne ring closing metathesis has been used to synthesize functional group carrying metathesis catalysts from a commercial (Ru-benzylidene) Grubbs’ catalysts. The new Grubbs-type ruthenium carbene was used to synthesize living heterotelechelic ROMP polymers without any intermediate purification. Olefin metathesis with a mono substituted alkyne followed by ring closing metathesis with an allylic ether provided efficient access to new functional group carrying metathesis catalysts. Different functional benzylidene and alkylidene derivatives have been investigated in the synthesis of heterotelechelic polymers in one pot

    Branched polymers via ROMP of termimers

    Get PDF
    Today's olefin metathesis catalysts show high reactivity, selectivity, and functional group tolerance and allow the design of new syntheses of precisely functionalized polymers. Here the synthesis of a new end-capping reagent is investigated allowing the introduction of a highly reactive activated ester end-group at the polymer chain end as well as its prefunctionalization to directly introduce functional moieties. The versatility of this new end-capping reagent is demonstrated by utilizing it to synthesize a so-called termimer (a monomer with termination capabilities). Copolymerization of a norbornene derivative with the termimer leads to hyperbranched ring-opening metathesis polymerization polymers as proven by gel permeation chromatography and MALDI-ToF-(matrix-assisted laser desorption/ionization time of flight) mass spectrometry

    Heterotelechelic polymers by ring‐opening metathesis and regioselective chain transfer

    Get PDF
    Heterotelechelic polymers were synthesized by a kinetic telechelic ring-opening metathesis polymerization method relying on the regioselective cross-metathesis of the propagating Grubbs’ first-generation catalyst with cinnamyl alcohol derivatives. This procedure allowed the synthesis of hetero-bis-end-functional polymers in a one- pot setup. The molecular weight of the polymers could be controlled by varying the ratio between cinnamyl alcohol derivatives and monomer. The end functional groups can be changed using different aromatically substituted cinnamyl alcohol derivatives. Different monomers were investigated and the presence of the functional groups was shown by NMR spectroscopy and MALDI-ToF mass spectrometry. Labeling experiments with dyes were conducted to demonstrate the orthogonal addressability of both chain ends of the heterotelechelic polymers obtained

    Synthesis of telechelic poly(p-benzamide)s

    Get PDF
    Well-defined telechelic poly(benzamide)s were synthesized by chain-growth polycondensation of phenyl-4-amino benzoate and pentafluorophenyl-4-amino benzoate derivatives with a bifunctional initiator in the presence of LiTMP as base. The polymerization was carried out at −70 °C to prevent self-initiated polymerization. To confirm the control over molecular weight, different defined molecular weight polymers were synthesized and analyzed by GPC. Taking advantage of the labile ester end groups of these poly(benzamide)s, we carried out postpolymerization modifications to introduce different end functional groups such as alkyne, amine, alcohol, alkyl halide, and olefin suitable for different types of postpolymerization reactions. Successful end group modification was confirmed by 1H NMR spectroscopy and isotopically resolved MALDI-ToF mass spectrometry

    Degradable precision polynorbornenes via ring-opening metathesis polymerization

    Get PDF
    In an attempt to introduce monomer sequence control in a growing polynorbornene via ring-opening metathesis polymerization, we employ dioxepins to efficiently determine the location of the monomers on the macromolecule backbone. Owing to the acid-labile acetal group, dioxepins allow scission of the polymer at the point of the dioxepin insertion and thus provide an indirect way to determine the monomer location. Additionally, dioxepins are used as spacers in the synthesis of multiblock polynorbornenes that are readily cleavable to afford the individual polynorbornene blocks

    Synthesis of High Molecular Weight Poly(pbenzamide)s

    Full text link

    Telechelics based on catalytic alternating ring-opening metathesis polymerization

    Get PDF
    We describe a protocol to synthesize alternating telechelic ROMP copolymers of 7- oxa-norbornene derivatives and cycloalkenes under catalytic conditions. These copolymers were synthesized using Grubbs’ second-generation catalyst. The sterically less hindered backbone double bonds of the resulting alternating copolymers facilitate the chain transfer (secondary metathesis) reactions. In the presence of symmetrical chain transfer agents (CTA), alternating copolymers could be synthesized catalytically. This procedure allows the synthesis of telechelic polymers based on potentially functional 7-oxa-norbornene derivatives under thermodynamic equilibrium conditions. The molar mass of the alternating copolymer was controlled by the monomer to CTA ratio. The end group of the copolymers synthesized in the catalytic manner was addressed by the CTA functionality, yielding telechelic copolymers in excellent yields. 1H NMR spectroscopy, MALDI-ToF mass spectrometry, and SEC analysis confirmed the chemical identity of the alternating telechelic copolymers with excellent control over the molar mass
    • …
    corecore